留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016年  第29卷  第4期

目录
目录
封面+目录
2016, 29(4).
摘要(125) PDF(25)
摘要:
封面文章
2014年北京奥体中心空气质量演变特征
高庆先, 李亮, 黄炳博, 高文康, 高文欧, 苏布达, 王学中
2016, 29(4): 465-474.
摘要(2211) PDF(1864)
摘要:
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.
大气环境
重污染天气下电力行业排放对京津冀地区PM2.5的贡献
杜晓惠, 徐峻, 刘厚凤, 刘俊, 何友江, 党鸿雁, 孟凡
2016, 29(4): 475-482.
摘要(2154) PDF(1897)
摘要:
利用CAMx(区域空气质量模型)中的PSAT(颗粒物源示踪技术),分析了重污染天气下分区域、分行业的污染物排放对京津冀地区PM2.5的贡献,设计了分行业排放的环境影响效率系数(EESCR)计算方法,并对“电能替代”(以电力行业产能替代民用能源消耗)情景方案下的排放进行模拟分析. 结果表明:在重污染天气背景下,电力行业排放对京津冀地区ρ(PM2.5)的贡献率较低,各地均低于10%,并且区域排放的贡献次序为京津冀以外地区>京津冀其他城市>当地,这与电力行业高架源排放的特征有关,而工业和民用行业对区域排放的贡献次序相反. PM2.5主要组分和前体物的分行业EESCR计算结果表明,电力行业ESSCR值均在y=1/2x趋势线之下,远低于其他行业,因此优先控制其他行业排放才是改善京津冀地区空气质量的关键.电能替代的情景模拟结果表明,电能替代是有效降低京津冀地区ρ(PM2.5)的可行方式. 研究显示,充分利用电力行业高架源排放的特点和便于集中处理的行业优势,尽力降低因产能增长带来的排放增量,实施电能替代可成为改善区域空气质量的有效途径之一.
京津冀PM2.5时空分布特征及其污染风险因素
周磊, 武建军, 贾瑞静, 梁念, 张凤英, 倪永, 刘明
2016, 29(4): 483-493.
摘要(2958) PDF(1657)
摘要:
为分析京津冀及其周边区域2013年典型污染事件中PM2.5的时空分布特征及污染风险因素,根据国家城市环境空气质量实时发布数据和京津冀地区地理国情信息监测成果,采用空间数据挖掘方法对PM2.5污染的热点区域进行了划分;并采用地理探测器定量分析了PM2.5污染风险因子及其影响程度. 结果表明:在选取的京津冀6个城市中,在PM2.5污染事件统计上存在保定—廊坊—北京—天津—承德—张家口的污染顺序. PM2.5污染在空间上呈河南省(山东省)—河北省—北京市(天津市)一线的带状分布特征,在单次污染事件中,城市间的PM2.5污染存在空间运移关系. 空间热点探测表明,京津冀及其周边区域主要分为5个热点聚集区,其中3个高值区分布在北京市、天津市、河北省和山东省的中部,面积分别为5.31×104、10.26×104、5.04×104 km2. 在8个污染风险因子中,污染企业总数(影响力为0.97,下同)、降水量(0.93)、地形坡度(0.89)对PM2.5污染的影响显著高于其他风险因子;其他风险因子影响力排序依次为人口数量(0.60)、降水量大于0.1 mm的降水日数(0.57)、地表覆盖类型(0.52)、年均相对湿度(0.51)、年均风速(0.33),但风险因子间相比没有显著性差异. 研究显示,京津冀地区PM2.5污染的主要因素是污染物排放,其次,气象要素中的年降水量和自然地理环境中的地形坡度也是影响PM2.5污染特征的重要风险因子.
基于浮动车数据分析交通状态对轻型车排放的影响
陈泳钊, 刘永红, 林晓芳, 黄建彰
2016, 29(4): 494-502.
摘要(2273) PDF(1288)
摘要:
为探讨交通状态对道路轻型车运行工况和尾气排放的影响,收集广州市珠江新城路网中出租车、轻型货车的浮动车数据并计算轻型车的运行工况参数,结合MOVES模型(Motor Vehicle Emission Simulator)和交通流量数据仿真计算轻型车的尾气排放量,分析畅通、拥堵、严重拥堵3种交通状态下轻型车的运行工况、排放速率、尾气排放量的变化与差异. 结果表明:在相同道路类型、不同交通状态下,轻型车的运行工况差异较大,其中拥堵和严重拥堵状态下运行模式分布主要集中于怠速、低速运行模式;在相同交通状态下,主干路的运行工况优于次干路,其怠速运行模式所占比例较次干路低15%~20%;畅通状态下,主、次干路轻型车HC、NOx、CO平均单车排放速率分别为2.00、1.87,2.57、2.47,42.59、37.51 mg/s,分别约为拥堵状态下的1.17、1.27、1.35倍,约为严重拥堵状态下的1.30、1.39、1.70倍,而主、次干路PM2.5平均单车排放速率在3种交通状态下均接近,范围在0.050~0.056 mg/s之间;轻型车在严重拥堵状态下单位时间的污染物排放量最高,是畅通状态下的2.22~3.87倍. 研究显示,交通状态是影响轻型车动态排放速率及道路总排放的重要因素.
轻型汽油车尾气PM2.5的排放特征
李宇飞, 李振华, 胡京南, 鲍晓峰, 何立强, 谭吉华, 祖雷
2016, 29(4): 503-508.
摘要(2171) PDF(1666)
摘要:
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视.
水环境
松花江干流PAHs的底泥-水交换行为及时空异质性
崔嵩, 付强, 李天霄, 李一凡, 刘毅鑫, 吕正律, 李鹏程
2016, 29(4): 509-515.
摘要(1957) PDF(1583)
摘要:
为了解松花江干流底泥和水体中PAHs(多环芳烃)的环境分布行为,应用逸度方法研究了松花江中PAHs的底泥-水交换行为及时空异质性特征. 结果表明:KOW(辛醇-水分配系数)影响PAHs的底泥-水交换行为,并与底泥-水交换的ff(逸度分数)呈显著负相关(R=-0.801,P=0.000),而ff与PAHs的溶解度则呈正相关(R=0.499,P<0.05);高环PAHs的底泥-水交换行为受w(OC)变化的影响较为强烈,w(OC)每提高0.10%,2~6环PAHs的ff降低0.7%~11.0%;春季PAHs的底泥-水交换的ff大于夏季. 低环的Nap(萘)表现出明显的由底泥向水体的迁移行为,Phe(菲)和FlA(荧蒽)几乎接近于平衡状态,而高环的BaP(苯并芘)和BgP(苯并苝)则相反. 夏季PAHs的大气传输及本地排放源的沉降,可能为松花江干流PAHs的主要来源;汇入支流的输入可视为主干河流水体中污染物的另一来源. 水体中2~4环PAHs处于中等变异,5~6环PAHs则表现为强变异;底泥中3~4环PAHs处于中等变异,而其他环数PAHs则呈强变异. 从季节性变化来看,夏季底泥中PAHs的CV(变异系数)相对较大,而春季水体中PAHs的CV则略大于夏季. 研究显示,PAHs物理化学性质的差异,水体中悬浮颗粒物和底泥中w(OC),以及外源性PAHs的输入,均会使不同环数PAHs在水体和底泥中的CV产生较大差异.
生态环境
地下水位和土壤温度对若尔盖泥炭地CH4排放的影响
高燕, 刘高慧, 杜乐山, 胡理乐, 康冰
2016, 29(4): 516-521.
摘要(1883) PDF(1752)
摘要:
为了深入分析环境因子对湿地CH4排放产生的影响,利用中型试验生态系对若尔盖典型泥炭地开展地下水位和土壤温度控制试验,比较不同条件下泥炭地2012年生长季(5—10月)CH4排放通量的月变化情况. 结果表明:高水位(土壤表面0 cm)下CH4排放通量最高,中水位(地表以下10 cm)下次之,低水位(地表以下20 cm)下最低;其中,10月CH4排放通量变化不明显,不同地下水位下泥炭地的CH4排放通量均在7月达到最大值,并且均呈明显的单峰曲线,高、中、低地下水位下CH4排放通量平均值分别为6.263 3、4.754 4和3.949 8 mg/(m2·h). 而且,在一定温度范围内,不同地下水位条件下CH4排放通量随土壤温度的升高均呈指数式增长. 其中,高水位下CH4排放通量对土壤温度变化最为敏感,中水位下次之,低水位下相对最不敏感. 研究显示,若尔盖泥炭地CH4排放通量表现出明显的季节性变化差异,并且季节性升温和涨水均会促进CH4排放通量的增加.
转Bt基因水稻残留秸秆对农田底栖动物的影响
刘方, 蒋万祥, 李俊生, 梁玉勇, 刘勇波
2016, 29(4): 522-528.
摘要(1657) PDF(1358)
摘要:
为研究转Bt基因水稻秸秆残留对稻田内底栖动物的潜在影响,利用转Bt基因水稻“华恢1号”及其亲本“明恢63”的秸秆进行稻田填埋试验,分析转Bt基因水稻秸秆中Bt蛋白对秸秆分解和底栖动物多样性的影响. 结果表明:①在填埋的水稻秸秆上共发现223个底栖动物,分属9个科,其中,在转Bt基因和非转基因水稻秸秆上均发现7个科. ②秸秆种类和秸秆填埋时间对底栖动物丰度、物种数、Shannon-Wiener多样性指数、辛普森优势集中性指数(Simpson diversity index)和Pielou均匀度指数均无明显影响. ③转Bt基因和非转基因水稻秸秆剩余率均随着填埋时间的延长而逐渐降低,填埋7周后,两种类型秸秆剩余率平均值均为44.0%,二者之间无明显差异. ④在填埋的7周内,转Bt基因水稻秸秆中w(Bt蛋白)平均值为1.99~3.04 μg/g,7周后为2.04 μg/g. 研究显示,稻田残留的转Bt基因水稻秸秆对底栖动物多样性无显著影响.
应用层次聚类分析法确定海菜花氨氮耐受阈值
陈书琴, 储昭升
2016, 29(4): 529-537.
摘要(1708) PDF(1915)
摘要:
为确定海菜花对NH4+-N的Nmtor(耐受阈值),通过不同水平ρ(NH4+-N)下的模拟试验,获得了30 d内各试验组海菜花生化指标〔SOD(超氧化物歧化酶)活性、POD(过氧化物酶)活性、CAT(过氧化氢酶)活性及MDA(丙二醛)含量〕及生长指标〔鲜质量、最长根长、w(Chla)〕,运用层次聚类分析法确定了海菜花对NH4+-N的Nmtor,并运用传统方法对生长指标予以分析,以验证层次聚类分析法的有效性和可靠性. 结果表明:①对海菜花SOD活性、CAT活性及MDA含量的层次聚类分析得到的海菜花对NH4+-N的Nmtor皆为0~3.0 mg/L,而由POD活性分析得到的Nmtor为0~8.0 mg/L,交集为0~3.0 mg/L;②根据鲜质量相对增长率、根长相对增长率、w(Chla)得到的海菜花对NH4+-N的Nmtor分别为0~4.0、0~8.0及0~3.0 mg/L,交集为0~3.0 mg/L;③大多数生化指标层次聚类分析结果相同,而通过生长指标结合试验现象分析所得结果则各有差异,层次聚类分析结果是生长指标分析结果的真子集.
云南菊科入侵物种与本地共生物种光合特性比较
陈新微, 魏子上, 刘红梅, 杨殿林, 王慧, 皇甫超河
2016, 29(4): 538-546.
摘要(2113) PDF(1557)
摘要:
为了探求菊科入侵植物的入侵机制,了解菊科入侵植物与非入侵植物光合特性的差异,以云南省包括薇甘菊(Mikania micrantha)、紫茎泽兰(Ageratina adenophora)、飞机草(Chromolaena odorata)、三叶鬼针草(Bidens pilosa)在内的4种菊科入侵物种为研究对象,并以与其共生的菊科外来非入侵物种熊耳草(Ageratum houstonianum)为对照,研究外来入侵物种与非入侵物种叶片特性及气体交换参数等方面的区别. 结果表明:薇甘菊、紫茎泽兰、飞机草和三叶鬼针草的Pnmax(maximum net photosynthetic rate, 最大净光合速率)分别为15.92、18.69、17.15和22.78 μmol/(m2·s),分别比其共生非入侵物种熊耳草的高出21.63%、42.77%、31.02%和73.99%;4种入侵物种的LSP(light saturation point, 光饱和点)和LCP(light compensation point, 光补偿点)也显著高于熊耳草,但其AQY(apparent quantum yield, 表观量子效率)却显著低于该共生种. 4种入侵物种叶片的Nmass(leaf N content per unit mass, 单位质量N含量)和CCmass(leaf construction cost per unit mass, 单位质量建成成本)均显著高于熊耳草,除飞机草外,其他3种入侵物种的PEUE(photosynthetic energy use efficiency, 光合能量利用效率)和PNUE(photosynthetic nitrogen use efficiency, 光合氮利用效率)均显著高于熊耳草,而飞机草和熊耳草之间差异并不显著. 5种植物叶片Nmass分别与叶片SLA(specific leaf area,比叶面积)、CCmass呈极显著正相关,与植物Pnmax、叶片Pmass(leaf N content per unit mass, 单位质量P含量)和PEUE呈显著正相关,植物Pnmax与PNUE、PEUE呈极显著正相关,与叶片SLA呈显著正相关. 研究显示,与菊科共生外来非入侵植物相比,较高的光合特性参数、叶片特性指标和能量利用效率指标可能是外来菊科入侵物种成功入侵的原因之一.
土壤环境
我国西北黄土对阿特拉津的吸附行为及影响因素
蒋煜峰, 慕仲锋, UWAMUNGU Jean Yves, 孙航, 胡雪菲, 展惠英, 刘鹏宇
2016, 29(4): 547-552.
摘要(2751) PDF(2792)
摘要:
为了探讨ATZ(阿特拉津)在黄土中的吸附/解吸行为及主要影响因素,以我国西北黄土为供试土样,采用批量试验法研究了黄土对ATZ的吸附动力学和热力学行为特征. 结果表明:黄土对ATZ的吸附动力学过程更符合准二级动力学模型,吸附热力学过程更符合线性分配的Henry吸附模型(R2>0.90),吸附过程中ΔGθ(吉布斯自由能)及ΔHθ(焓变)均小于0、ΔSθ(熵变)大于0,25~45 ℃温度范围内E(吸附平均自由能)为0.86~1.30 kJ/mol,表明黄土对ATZ的吸附过程以物理吸附为主,属于自发放热过程且导致吸附体系混乱度增加. 黄土对ATZ的吸附影响因素分析结果显示,随着系统温度的升高,ATZ在黄土中的饱和吸附量下降;pH在2~10范围内变化时,ATZ在黄土中的饱和吸附量随pH的增加呈明显降低趋势;初始ρ(ATZ)从2.5 mg/L增至10.0 mg/L时,黄土对ATZ的饱和吸附量也相应地从0.082 5 mg/g增至0.621 0 mg/g. 结果显示,ATZ在黄土中的吸附速率受内部扩散、表面吸附和液膜扩散的共同影响,并且吸附过程主要受到土壤有机质疏水性分配作用的影响.
风险评价与管理
乘用车内空气质量健康风险评估
刘琳琳, 葛蕴珊, 李兰, 张传桢
2016, 29(4): 553-557.
摘要(2147) PDF(1400)
摘要:
为研究我国乘用车内空气的污染现状,采用二次热解析-毛细管气相色谱/质谱联用及高效液相色谱法,测定了16个品牌的市售新车车内空气中BTEX(苯、甲苯、乙苯和二甲苯)、苯乙烯、甲醛、乙醛和丙烯醛等8种污染物质量浓度,并对其健康风险进行了评估. 结果表明:8种污染物的质量浓度除乙醛外均低于GB/T 27630—2011《乘用车内空气质量评价指南》中的标准限值,ρ(苯)、ρ(甲苯)、ρ(乙苯)、ρ(二甲苯)、ρ(苯乙烯)、ρ(甲醛)、ρ(乙醛)和ρ(丙烯醛)范围分别为3.00~73.00、69.00~798.00、18.00~469.75、46.00~1 296.42、12.00~46.00、19.00~72.00、43.29~323.00和5.20~7.60 μg/m3. 致癌物质苯、甲醛和甲苯的质量浓度最高值分别为GB/T 27630—2011各自标准限值的66.36%、72.00%和72.55%;二甲苯质量浓度点离散程度较小,分布集中,其平均值为GB/T 27630—2011标准限值(1 500 μg/m3)的11.86%;ρ(乙苯)最大值为其标准限值的1/3左右;而ρ(苯乙烯)和ρ(丙烯醛)远低于各自标准限值. ρ(苯)和ρ(甲醛)对驾乘人员的健康均可能造成致癌风险. 对于男性职业司机,苯和甲醛平均浓度的致癌风险分别为US EPA(美国国家环境保护局)规定的致癌风险基准值(1×10-6)的18.86和60.67倍,而二者对女性职业司机的致癌风险仅比男性降低了12.53%;对于男性普通驾乘人员,苯和甲醛平均浓度的致癌风险分别为基准值的2.83和9.10倍,女性略低于男性. 二甲苯平均浓度的非致癌风险是US EPA规定的基准HI(非致癌风险指数,取1)的1.78倍. 研究表明,为降低车内空气中有害物质对车内乘员的健康危害,需要采用环保的内饰材料,改善车内空气质量.
废旧塑料处置地沉积物中邻苯二甲酸酯污染特征及其生态风险
王昱文, 曾甯, 柴淼, 唐阵武
2016, 29(4): 558-565.
摘要(1802) PDF(1577)
摘要:
为了解废旧塑料处置活动对区域水体的影响,采用气相质谱联用仪(GC-MS),对河北省某废旧塑料处置地沉积物中16种PAEs(phthalate esters,邻苯二甲酸酯)的污染特征和生态风险进行了研究. 结果表明:研究样地的w(∑16PAEs)为0.527~102 μg/g, 平均值为18.9 μg/g,其中,DEHP〔邻苯二甲酸(2-乙基己基)酯〕是PAEs最主要的污染单体,平均占w(∑PAEs)的66.6%. 对该处置地的污染物源分析表明,沉积物中PAEs主要来源于废旧塑料回收利用过程中的环境排放. 沉积物中w(DEHP)(14.2 μg/g)和w(DBP)(1.41 μg/g)(DBP为邻苯二甲酸二正丁酯)均超过各自环境风险限值(ERLs),w(DIBP)(DIBP为邻苯二甲酸二异丁酯)超过了美国华盛顿州颁布的沉积物质量警戒限值(0.610 μg/g). 研究显示,沉积物中DBP对鱼类的生态风险及DEHP对藻类和鱼类的生态风险水平不可接受,应引起足够重视.
污染治理技术与方法
Cu循环催化羟胺与氧气反应降解甲基橙
周鹏, 张静, 张永丽, 刘蓓, 柯武, 史雅楠
2016, 29(4): 566-572.
摘要(1819) PDF(1487)
摘要:
为研究Cu/O2/HA(HA为盐酸羟胺)体系的氧化能力,以MO(甲基橙)为目标物,对该体系生成·OH(羟基自由基)的过程及机理进行了探讨,并分别考察了HA投加量(以c计)、pH、Cu(Ⅱ)投加量(以c计)和O2通量对MO降解的影响. 结果表明:Cu能够有效催化HA与O2的反应,生成大量H2O2,并进一步生成·OH,有效降解MO. HA投加量越高,MO降解率越高,但过高的HA投加量在初始阶段会对MO的降解形成抑制,最佳HA投加量为3 mmol/L;受到HA质子化的影响,反应的最适pH约为5.5;由于Cu(OH)2不利于催化HA与O2的反应,最佳Cu(Ⅱ)投加量为20 μmol/L;O2通量对MO的降解影响较小,最佳O2通量为0.15 L/min;Cu/O2/HA体系降解MO的初始阶段符合一级动力学模型. 研究显示,Cu/O2/HA体系具有良好的氧化能力,能够有效降解水中的MO,最佳反应条件下MO降解率达86.5%.
电催化还原脱毒预处理丙烯酸盐废水
王红, 宋玉栋, 余丽娜, 周岳溪, 朱书全
2016, 29(4): 573-578.
摘要(1543) PDF(1349)
摘要:
丙烯酸盐生物降解性好,但毒性较高,为解决含丙烯酸盐废水难以进行高负荷厌氧生物处理的问题,采用电催化还原技术预处理高浓度丙烯酸盐废水,考察了初始ρ(丙烯酸盐)、电流、废水pH、温度、ρ(对甲基苯磺酸盐)等对丙烯酸盐转化的影响. 结果表明:初始ρ(丙烯酸盐)、废水pH、电流对丙烯酸盐电催化还原为丙酸盐的过程影响较大,而废水温度和ρ(对甲基苯磺酸盐)的影响较小. 当废水初始ρ(丙烯酸盐)由5.0 g/L升至20.0~60.0 g/L时,丙烯酸盐转化速率由30.1 g/(L·h)升至51.9~54.6 g/(L·h),能耗下降近50%;随着操作电流从0.25 A升至2.00 A,丙烯酸盐转化速率由9.5 g/(L·h)线性增至85.1 g/(L·h),电流效率略有降低,能耗由2.0 W·h/g增至5.2 W·h/g;pH由2升至4时,能耗由6.6 W·h/g降至3.4 W·h/g;废水温度在30~50 ℃范围内、ρ(对甲基苯磺酸盐)在0~8.0 g/L范围内时,对丙烯酸盐的转化影响较小. 研究显示,在优化工艺条件(电流为1.00 A、废水pH为5、温度为30 ℃)下,电催化还原处理实际丙烯酸丁酯废水,电流效率达90%以上.
电化学氧化技术对藻源性湖泛的降解效果
周莉, 冯胜, 张运林, 李忠玉, 吴攀
2016, 29(4): 579-586.
摘要(1902) PDF(1522)
摘要:
为探索电化学氧化技术降解藻源性湖泛的可行性和实施效果,选取太湖藻华发生水域的浓缩藻类在室内稀释后,于高温黑暗条件下腐烂形成湖泛水样. 用钛基阴阳极板于24 V额定电压、100 W额定功率的变压器下在室内进行降解,并分别设置3个试验组和1个对照组. 结果表明:反应51 h后ρ(Chla)从初始的2 909.87 μg/L降至72.02 μg/L,降解率达97.6%;悬浮物〔OSM(有机悬浮物)、ISM(无机悬浮物)、TSM(总悬浮物)〕、含氮污染物〔TN、TDN(溶解性总氮)〕、CODMn、DOC(溶解性有机碳)的降解率分别为40.8~94.7%、37.4~58.9%、78.8%、40.1%;电化学氧化法对水体有机物的降解效果好,而短期内水体藻类污染物的自降解能力较为微弱. 电化学氧化法能有效去除湖泊水体中的藻类污染物,并且极板功率较小、反应时间短.
短程硝化-厌氧氨氧化组合工艺深度处理垃圾渗滤液
吴莉娜, 徐莹莹, 史枭, 杨天学, 彭永臻, 张杰
2016, 29(4): 587-593.
摘要(2214) PDF(1771)
摘要:
为解决垃圾渗滤液中高浓度污染物对微生物的毒性抑制、生物处理出水有机物或氮不达标及投加碳源成本高的问题,采用UASB(上流式厌氧污泥床)-A/O(缺氧/好氧)反应器-ANAMMOXR(厌氧氨氧化反应器)工艺,通过短程硝化-ANAMMOX(厌氧氨氧化)深度处理实际垃圾渗滤液与生活污水混和液(体积比为1∶10),其ρ(CODCr)、ρ(NH4+-N)和ρ(TN)分别为(750±30)(290±10)和(300±10)mg/L,试验共进行90 d. 结果表明:CODCr、NH4+-N和TN的去除率分别为88%±1%、95%±1%和91%±1%,最终出水质量浓度分别为(67±5)(15±2)和(35±5)mg/L,满足GB 16889—2008《生活垃圾填埋场污染控制标准》的排放要求. A/O反应器中的ρ(FA)(FA为游离氨)在0.21~1.38 mg/L之间,可抑制NOB(硝酸细菌),使AOB(氨氧化细菌)成为优势菌种,从而实现并维持NO2--N积累率(70%~96%)较高的短程硝化,继而在ANAMMOXR中通过ANAMMOX去除残余NH4+-N和NO2--N,实现系统对氮的深度去除.
以城市污水为水源和肥源对荒漠化土壤的修复效果
高中秋, 任勇翔, 陈灿灿, 杨垒, 肖松丽, 曹亚峰
2016, 29(4): 594-601.
摘要(2045) PDF(1480)
摘要:
为了同步实现城市污水净化和荒漠化土壤修复,以荒漠化土壤(沙土)作为人工湿地基质(基质深度分别为0.1和0.6 m),分析不同运行条件(植物种类、水力负荷、基质深度、季节变化等)下湿地对净化城市污水、修复荒漠化土壤的效果. 结果表明:经过2 a的修复,城市污水中污染物作为荒漠化修复的肥源可以快速富集到荒漠化土壤中. 与原沙相比,沙土中w(有机质)、w(TN)、w(碱解氮)、w(TP)、w(速效磷)及电导率均极显著增加(P<0.01),而pH并无显著变化(P>0.05). 沙土容重极显著降低(P<0.01),孔隙率极显著增大(P<0.01). 当城市污水作为荒漠化土壤修复水源时,即使水力负荷低至0.0075 m3/(m2·d),植物仍能正常生长. 基质深度为0.1 m的潜流湿地在不同水力负荷时对污水中CODCr、TN、TP的最低平均去除率分别为59.46%、77.45%、62.36%;基质深度为0.6 m的潜流湿地对污水中三者的平均去除率分别为59.24%、32.02%、57.89%;基质深度为0.6 m的表面流湿地对污水中三者的平均去除率则分别为80.40%、14.00%、29.31%. 研究显示,以城市污水为水源和肥源对荒漠化土壤修复2 a后,沙土中养分含量均显著增加,沙土结构也得到明显改善,各湿地在夏秋季对污水中CODCr、TN、TP均有较好的去除效果.
飞灰添加对沥青铺路烟气PAHs释放的影响
杨金忠, 高何凤, 黄启飞, 季炜, 谭巍, 杨玉飞
2016, 29(4): 602-608.
摘要(1720) PDF(1426)
摘要:
为评估生活垃圾焚烧飞灰替代矿粉生产沥青混合料及其路面浇筑全过程中PAHs的环境风险,采用实验室模拟与实际铺筑过程相结合的方法,改变飞灰添加量(以w计,0、3%、4%和5%)和加热温度(200、165、145和80 ℃),以对PAHs的释放规律进行研究. 结果表明:在实际筑路过程中,PAHs的释放受加热温度的影响较大,ρ(∑16PAHs)随加热温度的下降而降低,其中混合料制备和道路开放使用阶段的ρ(∑16PAHs)分别为249.0~378.0、72.1~95.1 μg/m3;但在路面浇筑阶段ρ(∑16PAHs)有增加的趋势,为254.0~571.0 μg/m3,并且在该阶段内ρ(4环PAHs)降低,低环(2~3环)和高环(5~6环)的PAHs质量浓度升高. 飞灰的添加抑制了PAHs的释放,w(∑16PAHs)在10.4~12.3 μg/kg之间,毒性当量浓度(以TEQ计)在0.011 μg/kg左右. 飞灰的添加抑制了以萘为主的低环PAHs的释放,并且在3%添加量时对PAHs的抑制效果最好;在飞灰添加量为3%、4%和5%时,w(萘)分别降低了42.7%、32.2%和35.3%.