留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大豆油加工行业VOCs排放特征及管控对策

姚震 吴宇峰 杜展霞 王效国 安小栓 聂磊

姚震, 吴宇峰, 杜展霞, 王效国, 安小栓, 聂磊. 大豆油加工行业VOCs排放特征及管控对策[J]. 环境科学研究, 2022, 35(6): 1388-1397. doi: 10.13198/j.issn.1001-6929.2022.03.04
引用本文: 姚震, 吴宇峰, 杜展霞, 王效国, 安小栓, 聂磊. 大豆油加工行业VOCs排放特征及管控对策[J]. 环境科学研究, 2022, 35(6): 1388-1397. doi: 10.13198/j.issn.1001-6929.2022.03.04
YAO Zhen, WU Yufeng, DU Zhanxia, WANG Xiaoguo, AN Xiaoshuan, NIE Lei. VOCs Emission Characteristics and Control Strategy for Edible Soybean Oil Production Industry[J]. Research of Environmental Sciences, 2022, 35(6): 1388-1397. doi: 10.13198/j.issn.1001-6929.2022.03.04
Citation: YAO Zhen, WU Yufeng, DU Zhanxia, WANG Xiaoguo, AN Xiaoshuan, NIE Lei. VOCs Emission Characteristics and Control Strategy for Edible Soybean Oil Production Industry[J]. Research of Environmental Sciences, 2022, 35(6): 1388-1397. doi: 10.13198/j.issn.1001-6929.2022.03.04

大豆油加工行业VOCs排放特征及管控对策

doi: 10.13198/j.issn.1001-6929.2022.03.04
基金项目: 北京市科技计划项目(No.Z181100005418015);大气重污染成因与治理攻关项目(No.DQGG0204)
详细信息
    作者简介:

    姚震(1996-),男,安徽淮北人,实习研究员,硕士,主要从事城市大气污染防治研究,yz047291@163.com

    通讯作者:

    聂磊(1977-),男,辽宁兴城人,研究员,硕士,主要从事城市大气污染防治研究,neilei@cee.cn

  • 中图分类号: X511

VOCs Emission Characteristics and Control Strategy for Edible Soybean Oil Production Industry

Funds: Beijing Science and Technology Projects, China (No.Z181100005418015);National Research Program for Key Issues in Air Pollution Control, China (No.DQGG0204)
  • 摘要: 国外对挥发性有机物(volatile organic compounds,VOCs)的减排经验表明,食用植物油加工行业作为主要溶剂使用源,需要对其排放的VOCs进行管控,为研究国内该行业的VOCs排放特征及管控对策,依据第二次全国污染源普查数据,选择了大豆油加工行业中的两家典型企业,对主要排放环节的排放强度及组分构成进行采样分析,结合最大增量反应活性法(maximum incremental reactivity,MIR)核算了行业的臭氧生成潜势(ozone formation potential,OFP). 结果表明:所选两家大豆油加工企业浸出工艺段、精炼工艺段及其配套污水处理厂均存在高浓度VOCs排放节点,各采样点位VOCs浓度范围为42.3~5 134.3 mg/m3,两家企业VOCs浓度最高的采样点位均出现在浸出工艺段的石蜡油吸收塔排气筒;浸出工艺段各采样点位的检出组分主要为正己烷、3-甲基戊烷、甲基环戊烷、2-丁烯醛,精炼工艺段检出组分中己烷及其同分异构体和2-丁烯醛同样占比较高,同时还检出了戊烷、乙烷、乙烯、1-丁烯、丙烯醛、苯和甲苯等组分;浸出工艺段和“浸出+精炼”企业精炼工艺段的OFP值分别为2.64和4.31 g/g,2-丁烯醛是首要活性组分. 目前国内食用植物油加工行业具有较大的VOCs减排潜力,建议根据行业排放特征明确行业污染防治的技术路线,出台大气排放标准,引导企业加强对自身VOCs排放的控制.

     

  • 图  1  大豆油加工工艺流程示意

    Figure  1.  Flow diagram of Soybean oil process

    图  2  浸出工艺溶剂回收系统示意

    Figure  2.  Diagram of solvent recovery system in extract process

    图  3  两家企业采样点位VOCs浓度水平

    Figure  3.  VOCs concentration level at two enterprises sampling points

    图  4  各采样点位VOCs组分类别占比

    Figure  4.  Sampling point VOCs component category proportion

    图  5  基于OFP的成分谱组分活性评估

    Figure  5.  Evaluation of component activity based on OFP

    图  6  国内大豆油浸出工艺段溶剂损耗量

    Figure  6.  Solvent loss in domestic soybean oil extract process

    表  1  样品采集具体信息

    Table  1.   Specific information of sampling

    企业采样点位序号工艺环节排放环节采样点位VOCs控制措施
    AA-1浸出工艺段设备和管道组件泄漏车间环境
    A-2冷凝+石蜡油回收尾气石蜡油吸收塔排气筒冷凝+石蜡油回收
    A-3精炼工艺段脱色尾气脱色管道环境
    A-4脱臭尾气脱臭管道环境
    A-5冷凝废水液面逸散冷凝废水液面
    A-6污水处理厂液面逸散排气筒活性炭吸附
    BB-1浸出工艺段设备和管道组件泄漏车间环境微负压收集
    B-2冷凝+石蜡油回收尾气石蜡油吸收塔排气筒冷凝+石蜡油回收
    B-3精炼工艺段脱臭和脱色尾气排气筒
    B-4污水处理厂液面逸散废水总进口液面
    下载: 导出CSV

    表  2  各采样点位主要VOCs组分

    Table  2.   Main VOCs components of each sample

    采样点位序号主要VOCs组分
    A-1 正己烷(31%)、3-甲基戊烷(24%)、2-丁烯醛(17%)、甲基环戊烷(17%)、甲基乙基酮(5%)、2-甲基戊烷(3%)、戊烷(1%)
    A-2 3-甲基戊烷(29%)、正己烷(24%)、2-丁烯醛(14%)、甲基环戊烷(14%)、甲基乙基酮(7%)、2-甲基戊烷(5%)、戊烷(2%)
    A-3 2-丁烯醛(16%)、甲基环戊烷(16%)、1-丁烯(14%)、戊烷(13%)、乙烯(11%)、正己烷(6%)、正戊烯(5%)、乙烷(3%)
    A-4 戊烷(24%)、2-丁烯醛(12%)、甲基环戊烷(12%)、1-丁烯(10%)、丙烯醛(5%)、正戊烯(5%)、乙烯(5%)、苯(4%)、乙烷(4%)
    A-5 丙烯醛(17%)、2-丁烯醛(11%)、甲基环戊烷(11%)、戊烷(10%)、苯(6%)、甲苯(6%)、正戊烯(5%)、1-丁烯(4%)、正己烷(3%)
    A-6 丙酮(15%)、2-丁烯醛(14%)、甲基环戊烷(14%)、甲位蒎烯(12%)、苯甲醛(12%)、乙醇(9%)、正己烷(4%)、3-甲基戊烷(3%)
    B-1 正己烷(37%)、3-甲基戊烷(23%)、2-丁烯醛(14%)、甲基环戊烷(14%)、甲基乙基酮(5%)、2-甲基戊烷(4%)、环戊烷(1%)
    B-2 正己烷(29%)、3-甲基戊烷(29%)、2-丁烯醛(12%)、甲基环戊烷(12%)、甲基乙基酮(7%)、2-甲基戊烷(5%)、环戊烷(2%)
    B-3 2-丁烯醛(30%)、甲基环戊烷(30%)、正己烷(10%)、戊烷(7%)、苯(6%)、3-甲基戊烷(4%)、甲苯(2%)、丙烯醛(2%)
    B-4 2-丁烯醛(22%)、甲基环戊烷(22%)、正己烷(13%)、乙醇(10%)、3-甲基戊烷(5%)、苯(4%)、戊烷(3%)、苯甲醛(3%)
    注:括号内数值为各VOCs物种浓度占总VOCs浓度的比例.
    下载: 导出CSV

    表  3  浸出工艺段与“浸出+精炼”企业精炼工艺段源成分谱

    Table  3.   VOCs emission profile of the extract process section and the refining process section of the ‘extract + refining’ enterprise

    VOCs组分质量分数/%VOCs组分质量分数/%
    浸出工艺段精炼工艺段浸出工艺段精炼工艺段
    乙烷 0.22 0.03 苯乙烯 ND ND
    丙烷 0.04 0.03 ND ND
    丁烷 0.03 0.04 氯甲烷 0.01 ND
    异丁烷 0.17 ND 氯乙烷 0.01 ND
    2,2-二甲基丁烷 0.00 ND 二氯甲烷 ND ND
    2,3-二甲基丁烷 0.58 0.05 1,1-二氯乙烷 0.00 ND
    戊烷 0.95 7.46 1,2-二氯乙烷 0.01 0.02
    异戊烷 0.04 0.34 1,2-二氯丙烷 ND ND
    2-甲基戊烷 4.35 0.21 氯仿 0.00 ND
    3-甲基戊烷 26.28 3.87 1,1,1-三氯乙烷 0.00 ND
    2,3-二甲基戊烷 0.07 0.51 1,1,2-三氯乙烷 ND ND
    2,4-二甲基戊烷 0.73 1.52 四氯化碳 0.00 ND
    2,2,4-三甲基戊烷 0.00 ND 1,1,2,2-四氯乙烷 ND 0.23
    2,3,4-三甲基戊烷 ND 0.01 氯乙烯 0.00 ND
    环戊烷 0.72 0.08 1,1-二氯乙烯 0.00 ND
    甲基环戊烷 14.29 30.29 顺-1,2-二氯乙烯 0.00 ND
    正己烷 30.47 10.43 反-1,2-二氯乙烯 0.00 ND
    3-甲基庚烷 ND 0.01 顺-1,3-二氯丙烯 ND ND
    3-甲基己烷 0.00 0.01 反-1,3-二氯丙烯 ND ND
    环己烷 0.07 0.16 三氯乙烯 ND ND
    甲基环己烷 ND 0.01 四氯乙烯 ND ND
    庚烷 ND 0.28 氯苯 ND ND
    2-甲基庚烷 ND 0.04 1,3-二氯苯 ND ND
    2-甲基己烷 0.00 0.06 1,4-二氯苯 ND ND
    辛烷 ND 0.46 1,2-二氯苯 ND ND
    壬烷 ND 0.02 1,2,4-三氯苯 ND ND
    下载: 导出CSV
     续表 3
    VOCs组分质量分数/%VOCs组分质量分数/%
    浸出工艺段精炼工艺段浸出工艺段精炼工艺段
    癸烷 ND ND 苄基氯 ND ND
    十一烷 ND ND 溴甲烷 0.00 ND
    十二烷 ND ND 1,2-二溴乙烷 ND ND
    乙炔 0.01 ND 溴仿 ND ND
    乙烯 0.02 0.12 一溴二氯甲烷 0.00 0.06
    丙烯 0.00 0.09 二溴一氯甲烷 ND ND
    1-丁烯 0.01 0.55 三氯一氟甲烷 0.00 ND
    1,3-丁二烯 ND ND 三氯三氟乙烷 0.00 ND
    反-2-丁烯 0.00 ND 二氯二氟甲烷 0.00 ND
    顺-2-丁烯 0.00 0.00 二氯四氟乙烷 0.00 ND
    正戊烯 0.01 1.06 六氯-1,3-丁二烯 0.00 ND
    反-2-戊烯 0.02 0.58 甲基乙基酮 6.06 ND
    顺-2-戊烯 0.00 0.17 甲基丁基酮 ND ND
    异戊二烯 0.00 0.09 1,4-二氧六环 0.00 0.06
    正己烯 0.01 1.44 丁醛 ND ND
    乙位蒎稀 0.00 0.01 戊醛 0.00 0.09
    甲位蒎稀 ND ND 正己醛 ND 0.01
    0.01 5.51 丙烯醛 0.00 0.84
    甲苯 ND 2.03 甲基丙烯醛 0.09 ND
    间/对二甲苯 ND 0.29 苯甲醛 ND ND
    邻二甲苯 ND 0.02 2-丁烯醛 14.29 30.29
    乙苯 ND 0.37 丙酮 0.01 ND
    丙基苯 ND 0.12 甲基异丁基酮 0.00 0.02
    异丙苯 ND 0.00 甲基丙烯酸甲酯 ND ND
    间乙基甲苯 ND ND 乙酸乙酯 0.16 0.01
    对乙基甲苯 ND ND 乙酸乙烯酯 ND ND
    邻乙基甲苯 ND ND 乙醇 0.25 ND
    间二乙基苯 ND ND 异丙醇 ND ND
    对二乙基苯 ND ND 甲基叔丁基醚 0.00 ND
    1,2,3-三甲基苯 ND ND 二硫化碳 0.00 ND
    1,2,4-三甲基苯 ND ND 四氢呋喃 ND ND
    1,3,5-三甲基苯 ND ND
    注:ND表示低于检出限.
    下载: 导出CSV
  • [1] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.

    LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778.
    [2] 柴发合.中国未来三年大气污染治理形势预判与对策分析[J].中国环境监察,2019(1):29-31.
    [3] LU K D,GUO S,TAN Z F,et al.Exploring atmospheric free-radical chemistry in China:the self-cleansing capacity and the formation of secondary air pollution[J].National Science Review,2018,6(3):579-594.
    [4] 谢绍东,田晓雪.挥发性和半挥发性有机物向二次有机气溶胶转化的机制[J].化学进展,2010,22(4):727-733.

    XIE S D,TIAN X X.Formation mechanism of secondary organic aerosols from the reaction of volatile and semi-volatile compounds[J].Progress in Chemistry,2010,22(4):727-733.
    [5] 修光利,吴应,王芳芳,等.我国固定源挥发性有机物污染管控的现状与挑战[J].环境科学研究,2020,33(9):2048-2060.

    XIU G L,WU Y,WANG F F,et al.Current status and challenge for control of volatile organic compounds (VOCs) from stationary sources in China[J].Research of Environmental Sciences,2020,33(9):2048-2060.
    [6] MO Z W,SHAO M,LU S H,et al.Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta,China[J].Science of the Total Environment,2015,533:422-431. doi: 10.1016/j.scitotenv.2015.06.089
    [7] ZHONG Z M,SHA Q E,ZHENG J Y,et al.Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta Region of China[J].Science of the Total Environment,2017,583:19-28. doi: 10.1016/j.scitotenv.2016.12.172
    [8] 景盛翱,王红丽,朱海林,等.典型工业源VOCs治理现状及排放组成特征[J].环境科学,2018,39(7):3090-3095.

    JING S G,WANG H L,ZHU H L,et al.Treatment status and emission characteristics of volatile organic compounds from typical industrial sources[J].Environmental Science,2018,39(7):3090-3095.
    [9] FENG Y X,XIAO A S,JIA R Z,et al.Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery[J].Environmental Pollution,2020,265:115026. doi: 10.1016/j.envpol.2020.115026
    [10] 范例,李鹏,李文生,等.重庆市汽车产业园挥发性有机物排放特征[J].环境工程技术学报,2018,8(5):571-576.

    FAN L,LI P,LI W S,et al.Characterization of VOCs emission in automotive industrial park in Chongqing[J].Journal of Environmental Engineering Technology,2018,8(5):571-576.
    [11] 吕大器,陆思华,谭鑫,等.典型地方炼化企业VOCs排放特征及其对二次污染生成的贡献[J].环境科学研究,2021,34(1):103-113.

    LÜ D Q,LU S H,TAN X,et al.Emission characteristics of VOCs from typical local refineries and associated contributions to secondary pollution[J].Research of Environmental Sciences,2021,34(1):103-113.
    [12] United States Environmental Protection Agency.Guideline series:control of volatile organic emissions from manufacture of vegetable oils[EB/OL].Washington DC:United States Environmental Protection Agency,(1978-06-01)[2021-05-20].https://www.epa.gov/ground-level-ozone-pollution/control-techniques-guidelines-and-alternative-control-techniques.
    [13] United States Environmental Protection Agency.National emission standards for hazardous air pollutants:solvent extraction for vegetable oil production residual risk and technology review[EB/OL].Washington DC:United States Environmental Protection Agency,(2020-03-18)[2021-05-20].https://www.epa.gov/stationary-sources-air-pollution/solvent-extraction-vegetable-oil-production-national-emission.
    [14] European Union.Directive 2010/75/EU of the European Parliament and of the Council[EB/OL].Strasbourg:the European Parliament and the Council of the European Union,(2010-11-24)[2021-05-20].https://eur-lex.europa.eu/legal-content/EN/ALL/?uri =CELEX%3A32010L0075.
    [15] European Union.Decision (EU) 2019/2031 of 12 November 2019 establishing best available techniques (BAT) conclusions for the food,drink and milk industries[EB/OL].Strasbourg:the European Parliament and the Council of the European Union,(2019-12-04)[2021-05-20].http://data.europa.eu/eli/dec_impl/2019/2031/oj.
    [16] BATTISTONI P,FAVA G.Pollutant emission factors for the vegetable oil industry[J].Journal of the Air Pollution Control Association,1984,34(1):52-54. doi: 10.1080/00022470.1984.10465725
    [17] 秦卫国,万辉,周人楷.植物油厂有机废气的排放与控制措施[J].粮食与食品工业,2013,20(4):23-25. doi: 10.3969/j.issn.1672-5026.2013.04.006

    QIN W G,WAN H,ZHOU R K.VOCs emissions and control measures in vegetable oil pants[J].Cereal & Food Industry,2013,20(4):23-25. doi: 10.3969/j.issn.1672-5026.2013.04.006
    [18] 王瑞元.2018年我国油料油脂生产供应情况浅析[J].中国油脂,2019,44(6):1-5. doi: 10.3969/j.issn.1003-7969.2019.06.001
    [19] 王瑞元.2019年我国粮油生产及进出口情况[J].中国油脂,2020,45(7):1-4. doi: 10.12166/j.zgyz.1003-7969/2020.07.001

    WANG R Y.Production,import and export of grain and oil in China in 2019[J].China Oils and Fats,2020,45(7):1-4. doi: 10.12166/j.zgyz.1003-7969/2020.07.001
    [20] United States Environmental Protection Agency.Method 18-measurement of gaseous organic compound emissions by gas chromatography[EB/OL].Washington DC:United States Environmental Protection Agency,(2019-01-14)[2021-05-20].https://www.epa.gov/emc/method-18-volatile-organic-compounds-gas-chromatography.
    [21] United States Environmental Protection Agency.Compendium method TO-15 determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by GC/MS[R].Washington DC:Office of Research and Development,1999:14-28.
    [22] CARTER W P L.Estimation of ozone reactivities for volatile organic compound speciation profiles in the speciate 4.2 database[EB/OL].California,CA:University of California,(2013-11-21)[2021-05-20].https://intra.engr.ucr.edu/~carter.
    [23] 段国聪,张立伟,陈智斌.浸出车间正确操作对降低溶剂消耗的重要性[J].西部粮油科技,2001,26(4):14-16. doi: 10.3969/j.issn.1007-6395.2001.04.006
    [24] 李丙山,范荣颢.石蜡油尾气回收工艺的技术探索[J].中国油脂,2001,26(2):55. doi: 10.3321/j.issn:1003-7969.2001.02.023
    [25] LI G H,WEI W,SHAO X,et al.A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts[J].Journal of Environmental Sciences,2018,67:78-88. doi: 10.1016/j.jes.2017.08.003
    [26] 王迪,聂磊,赵文娟,等.基于工艺过程的金属包装业VOCs污染特征[J].环境科学,2020,41(3):1099-1106.

    WANG D,NIE L,ZHAO W J,et al.Pollution characteristics of volatile organic compounds emission from the metal packaging industry based on analysis of process[J].Environmental Science,2020,41(3):1099-1106.
    [27] 马怡然,高松,王巧敏,等.合成树脂行业挥发性有机物排放成分谱及影响[J].中国环境科学,2020,40(8):3268-3274. doi: 10.3969/j.issn.1000-6923.2020.08.003

    MA Y R,GAO S,WANG Q M,et al.Source profiles and impact of volatile organic compounds in the synthetic resin industry[J].China Environmental Science,2020,40(8):3268-3274. doi: 10.3969/j.issn.1000-6923.2020.08.003
    [28] 王通,于宏兵,张艳芳,等.唐山市钢结构制造业VOCs排放特征及其反应活性[J].环境工程,2019,37(5):173-177.

    WANG T,YU H B,ZHANG Y F,et al.Characteristics of emission and reactivity of VOCs emitted from steel structure manufacturing industry in Tangshan[J].Environmental Engineering,2019,37(5):173-177.
    [29] 刘文文,方莉,郭秀锐,等.京津冀地区典型印刷企业VOCs排放特征及臭氧生成潜势分析[J].环境科学,2019,40(9):3942-3948.

    LIU W W,FANG L,GUO X R,et al.Emission characteristics and ozone formation potential of VOCs in printing enterprises in Beijing-Tianjin-Hebei[J].Environmental Science,2019,40(9):3942-3948.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  148
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2022-02-21

目录

    /

    返回文章
    返回