Advances in Qualitative and Semi-Quantitative Analysis of Reactive Oxygen Species in Advanced Oxidation Processes
-
摘要: 对高级氧化反应体系中活性氧化物质(ROS)的类型、贡献占比和反应途径的定性与半定量分析对于探究有机污染物的降解过程与具体机制至关重要. 基于文献调研,本文总结了高级氧化体系中多种ROS的氧化还原电位、反应机制等主要特点,综述了ROS的定性和半定量分析方法,包括电子顺磁性共振技术、ROS选择性淬灭方法、化学探针法、电化学法、原位拉曼法、穆斯堡尔光谱法、同步辐射法和定量构效关系分析法,分析了其优缺点和应用场景. 结果表明:①高级氧化体系中通常存在ROS的协同作用,这会在一定程度上干扰ROS的定量分析结果. ②由于分析难度高、影响因素繁多,目前缺乏快速准确的ROS定量检测技术. 为更加科学合理地开展有机污染降解机理探究和应用技术开发工作,今后应以ROS快速定量检测技术和原位技术为研究重点,结合模型方法等辅助手段分析高级氧化体系中的活性氧化物质暴露量或瞬态浓度及其对污染物去除的贡献,以及预测污染物去除效率等.Abstract: Qualitative and semi-quantitative analysis of the type, contributions and reaction pathways of reactive oxygen species (ROS) is crucial to explore contaminant degradation mechanisms. Based on the previous literature, this study summarized the main characteristics of ROS (redox potentials and reaction mechanisms), and reviewed the qualitative and semi-quantitative analysis methods of ROS, including electron paramagnetic resonance, quenching, chemical probe, electrochemical, in situ Raman, Mossbauer spectroscopy, synchrotron radiation and quantitative structure-activity relationship analysis methods. Their advantages, shortcomings and application scenarios were discussed. The results show that: (1) The synergistic effect of ROS usually exists in advanced oxidation systems, which will interfere with the quantitative analysis results of ROS to a certain extent. (2) Due to the high analysis difficulty and numerous influencing factors, there is a lack of rapid and accurate quantitative detection technique for ROS. In order to explore the mechanism of organic pollution degradation and develop application technologies in a more scientific and reasonable way, rapid quantitative detection technology and in situ technique for ROS should be the research focus in the future, combined with model methods to analyze the exposure amount or transient concentration of ROS in advanced oxidation systems and their contribution to pollutant removal, and to predict the efficiency of pollutant removal.
-
表 1 高级氧化体系中常见的活性氧化物质(ROS)
Table 1. Common reactive oxygen species in advanced oxidation systems (ROS)
AOPs 主要ROS 数据来源 芬顿氧化 •OH、Fe(Ⅳ)和O2•− 文献[4] 过硫酸盐氧化 SO4•−、过氧单硫酸根自由基(SO5•−)、•OH和1O2 文献[5] 过氧乙酸氧化 •OH、乙酰氧基、乙酰过氧基 文献[6] 臭氧氧化 臭氧(O3)、•OH、O2•−和臭氧自由基(O3•−) 文献[7-8] 光催化氧化 •OH、光生电子(eCB)、电子空穴(hVB+)和SO4•− 文献[9-10] 电化学氧化 •OH、电子(e)和双氧水(H2O2) 文献[11] 辐射辅助氧化 •OH、水合电子(eaq)、氢自由基(H•)和H2O2 文献[12] 超声波辅助氧化 •OH、O2•−、H•和H2O2 文献[13] 其他 表面活性中间体、持久自由基(PFRs)、高价金属和Cl•等 文献[14-17] 表 2 高级氧化体系中典型ROS的基本理化性质
Table 2. Basic physicochemical properties of common ROS in advanced oxidation systems
ROS 氧化还原电位(E0) 寿命 机制 主要特点 数据来源 •OH E0(•OH/H2O)=2.73 V 20 ns 夺氢、加成、电子转移 扩散限制(<25 nm) 文献[4,16,21,25-28] SO4•− E0(SO4•−/SO42−)=2.50 V 30~40 μs 电子转移、夺氢、加成 易受到水中腐殖质等共存有机污染物质的干扰 文献[25,27-29] O2•− E0(O2•−/H2O2) = 0.91 V 1 s 夺氢 反应性较弱;生成氧化还原反应的常见中间产物 文献[30-31] CO3•− E0(CO3•−/HCO3−)=1.78 V 1~10 μs 电子转移 CO3•−与苯胺和含硫化合物的反应速率较快 文献[28,32] 含卤素自由基
(Cl•、Cl2•−、Br•)E0(Cl•/Cl−)=2.5 V、
E0(Cl2•−/Cl−)=2.2 V、
E0(Br•/Br−)=2.0 V— 夺氢、加成电子转移 反应速率常数的范围〔<103~1010 L/(mol·s)〕较广;Cl•反应最迅速〔108~1010 L/(mol·s)〕,X•比X2•−反应更快;极易产生有高致癌性、细胞毒性和致突变性的卤化产物,但也有研究表明引入Cl−可以提升高级氧化效果且不产生消毒副产物 文献[16,33] 含氮自由基
(NO3•、NO2•、NO•)E0(NO3•/NO3−)=2.3~2.5 V、
E0(NO2•/NO2−)=1.03 V、
E0(NO•/NO−)=0.39 V— 电子转移 极易产生有高致癌性、细胞毒性和致突变性的(亚)硝化产物 文献[34] 续表 ROS 氧化还原电位(E0) 寿命 机制 主要特点 数据来源 PFRs — 几天至几月 电子转移、电子介导 有机物质部分碳化形成以碳/氧为中心自由基或碳中心非共电子对,如半醌、环戊二烯基和苯氧基;反应活性较高 文献[35] H• E0(H•/eaq−)=−2.10 V — 加氢还原 快速降解含吸电子基团的有机化合物 文献[21] SO5•− E0(SO5•−/SO42−)=1.22 V — 氧化 氧化能力低 文献[36] H2O2 E0(H2O2/H+)=1.78 V 小时级 氧化 氧化能力低 文献[36] 1O2 E0(1O2/O2•−)=0.81 V 2~3.5 μs 氧化 在芳香族化合物的链引发和增长过程中起重要作用 文献[31,37] 以Fe(Ⅳ)为代表
的高价金属E0〔Fe(Ⅳ)/Fe(Ⅲ)〕=1.80 V 7 s 电子转移、
亲电加成氧化能力较弱 文献[4,25,36,38] O3 E0(O3/O3•−)=1.03 V <1 h 氧化 稳定性取决于水基质pH和天然有机物 文献[7,26] 表面活性中间体 碳纳米管(CNT)-过二硫酸盐(PDS)复合物,E0=0.65 V — 氧化 温和且具有选择性;扩散限制(<1 μm) 文献[5,14] 表 3 多种捕获剂与ROS的特征反应
Table 3. Characteristic reaction between various trapping agents and ROS
表 4 ROS与典型淬灭剂反应的速率常数(k)
Table 4. Rate constants of reaction between ROS and quenchers
目标ROS 淬灭剂 k/[L/(mol·s)] 数据来源 •OH SO4•− O2•− 1O2 •OH和SO4•− 叔丁醇 6×108 4×105 — 3.04×103 文献[10,48] 异丙醇 1.9×109 8.2×107 — 3.48×103 文献[48] 甲醇 9.7×108 1.1×107 — 3.89×103 文献[10,48] 乙醇 2.8×109 7.7×107 — 3.80×103 文献[48] O2•− 对苯醌 1.2×109 — 8.3×108 3.4×107 文献[49] 氯仿 < 2×106 — 1.1×109 — 文献[10] 1O2 叠氮化钠 1.2×1010 2.5×109 — 2×108 文献[50] L-组氨酸 7.1×109 2.5×109 — 3.2×107 文献[48] 糠醇 1.5×1010 1.3×1010 3.5×103 1.2×108 文献[48] 表 5 ROS的化学探针反应
Table 5. Chemical probe reaction of ROS
首步反应类型 ROS 探针及主要产物 数据来源 加成 •OH 苯甲酸(羟基化产物) 文献[4] •OH 水杨酸(2,3-二羟基苯甲酸和2,5-二羟基苯甲酸) 文献[52-53] •OH 对苯二甲酸(2-羟基对苯二甲酸) 文献[54] 取代 •OH 二甲基亚砜(甲醛,其再与2,4-二硝基苯肼反应生成特征产物腙) 文献[52] 消除 H2O2 硼基苯并[b]喹啉鎓衍生物(苯并[b]喹啉鎓衍生物) 文献[55] 聚合 H2O2 4-羟基-3-甲氧基-苯乙酸(辣根过氧化物酶存在时生成荧光二聚体) 文献[56] 氧化 高价金属 二甲基亚砜(二甲基砜) 文献[4,17] 1O2 9,10-二甲基蒽(9,10-二甲基蒽的内过氧化物) 文献[57] 还原 O2•− 氯化硝基四唑蓝(蓝色单臜) 文献[53] O2•− 四硝基甲烷(硝基甲烷阴离子) 文献[58] 表 6 ROS与有机物反应的构效关系
Table 6. Structure-activity relationship between ROS and organic compounds
ROS 目标物 描述符及相关性 相关解释 数据来源 活性中间体 溴酚 lg(kobs/k)与E1/2呈负相关 单电子氧化为主 文献[68] SO4•− 芳香族化合物 吉普斯自由能(ΔG)与EHOMO呈负相关 亲电取代为主 文献[67] 含氯自由基和H2PO4• 芳香胺类化合物 lg(kobs/k)与EHOMO不相关 自由基亲电攻击可能性小 文献[69] O3和CO3•− 芳香胺类化合物 lg(kobs/k)与EHOMO呈正相关 自由基亲电攻击可能性大 文献[69] SO4•− 芳烃和酰胺类化合物 kobs与EHOMO和IP均不相关,与ELOMO和EHOMO的差值呈负相关 无主导反应 文献[29] Cl• 酚类、烷氧基苯类和苯胺类化合物 kobs与σ+不相关 给/吸电子官能团不影响
反应文献[33] Cl2•− 酚类、烷氧基苯类和苯胺类化合物 kobs与σ+呈负相关 亲电反应为主 文献[33] O3和HFeO4− 酚类化合物 kobs与σ+呈负相关 亲电反应为主 文献[70] O3 烯烃 kobs与σ*呈负相关 与具有给电子取代基的烯烃反应较快 文献[70] 活性中间体 酚和苯胺类化合物 lg kobs与σ+和σ−均呈负相关 与具有给电子取代基的芳香族化合物反应更快 文献[68] -
[1] 毛佳迪,于南洋,于红霞,等.环境中有机污染物的高通量筛查技术研究进展[J].环境化学,2020,39(1):156-165. doi: 10.7524/j.issn.0254-6108.2019021303MAO J D,YU N Y,YU H X,et al.Research process of the high-throughput screening for identification of environmental organic pollutants[J].Environmental Chemistry,2020,39(1):156-165. doi: 10.7524/j.issn.0254-6108.2019021303 [2] 王会霞,史浙明,姜永海,等.地下水污染识别与溯源指示因子研究进展[J].环境科学研究,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10WANG H X,SHI Z M,JIANG Y H,et al.Research progress on indicator of groundwater pollution identification and traceability[J].Research of Environmental Sciences,2021,34(8):1886-1898. doi: 10.13198/j.issn.1001-6929.2021.03.10 [3] 乔世俊,赵爱平,徐小莲,等.高级催化氧化法降解有机工业废水的研究[J].环境科学研究,2005,18(5):104-106. doi: 10.3321/j.issn:1001-6929.2005.05.026QIAO S J,ZHAO A P,XU X L,et al.Study on organic industrial wastewater degradation by advanced catalytic oxidation method[J].Research of Environmental Sciences,2005,18(5):104-106. doi: 10.3321/j.issn:1001-6929.2005.05.026 [4] ZHOU C Y,ZHOU P,SUN M L,et al.Nitrogen-doped carbon nanotubes enhanced Fenton chemistry:role of near-free iron(Ⅲ) for sustainable iron(Ⅲ)/iron(Ⅱ) cycles[J].Water Research,2022,210:117984. doi: 10.1016/j.watres.2021.117984 [5] REN W,NIE G,ZHOU P,et al.The intrinsic nature of persulfate activation and N-doping in carbocatalysis[J].Environmental Science & Technology,2020,54(10):6438-6447. [6] 王静晓,朱柯安,陈飞.氯离子活化过氧乙酸对罗丹明B的降解性能及机理研究[J].环境科学研究,2021,34(12):2850-2858. doi: 10.13198/j.issn.1001-6929.2021.09.19WANG J X,ZHU K A,CHEN F.Degradation performance and mechanism of rhodamine B by chloride activated peracetic acid[J].Research of Environmental Sciences,2021,34(12):2850-2858. doi: 10.13198/j.issn.1001-6929.2021.09.19 [7] 张佳丽,魏健,任越中,等.臭氧氧化降解水中青霉素G特性和动力学特征[J].环境科学研究,2019,32(7):1231-1238. doi: 10.13198/j.issn.1001-6929.2019.03.27ZHANG J L,WEI J,REN Y Z,et al.Degradation characteristics and kinetics of penicillin G in water by ozone oxidation[J].Research of Environmental Sciences,2019,32(7):1231-1238. doi: 10.13198/j.issn.1001-6929.2019.03.27 [8] GUO Y,ZHAN J H,YU G,et al.Evaluation of the concentration and contribution of superoxide radical for micropollutant abatement during ozonation[J].Water Research,2021,194:116927. doi: 10.1016/j.watres.2021.116927 [9] NOSAKA Y,KOMORI S,YAWATA K,et al.Photocatalytic ˙OH radical formation in TiO2 aqueous suspension studied by several detection methods[J].Physical Chemistry Chemical Physics,2003,5(20):4731-4735. doi: 10.1039/B307433A [10] RÓZSA G,NÁFRÁDI M,ALAPI T,et al.Photocatalytic,photolytic and radiolytic elimination of imidacloprid from aqueous solution:reaction mechanism,efficiency and economic considerations[J].Applied Catalysis B:Environmental,2019,250:429-439. doi: 10.1016/j.apcatb.2019.01.065 [11] 张冬梅,刘蕾,褚衍洋.电-Fenton氧化降解2,4-二氯酚[J].环境科学研究,2012,25(9):1041-1046. doi: 10.13198/j.res.2012.09.86.zhangdm.016ZHANG D M,LIU L,CHU Y Y.Degradation of 2,4-dichlorophenol by electro-Fenton oxidation process[J].Research of Environmental Sciences,2012,25(9):1041-1046. doi: 10.13198/j.res.2012.09.86.zhangdm.016 [12] ZHUAN R,WANG J L.Degradation of sulfamethoxazole by ionizing radiation:kinetics and implications of additives[J].Science of the Total Environment,2019,668:67-73. doi: 10.1016/j.scitotenv.2019.03.027 [13] LIU X R,SHI J M,BAI X F,et al.Ultrasound-excited hydrogen radical from NiFe layered double hydroxide for preparation of ultrafine supported Ru nanocatalysts in hydrogen storage of N-ethylcarbazole[J].Ultrasonics Sonochemistry,2021,81:105840. doi: 10.1016/j.ultsonch.2021.105840 [14] REN W,XIONG L L,YUAN X H,et al.Activation of peroxydisulfate on carbon nanotubes:electron-transfer mechanism[J].Environmental Science & Technology,2019,53(24):14595-14603. [15] FANG G D,GAO J,LIU C,et al.Key role of persistent free radicals in hydrogen peroxide activation by biochar:implications to organic contaminant degradation[J].Environmental Science & Technology,2014,48(3):1902-1910. [16] XIANG Y Y,FANG J Y,SHANG C.Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process[J].Water Research,2016,90:301-308. doi: 10.1016/j.watres.2015.11.069 [17] ZONG Y,GUAN X H,XU J,et al.Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt(Ⅱ)-activated peroxymonosulfate process[J].Environmental Science & Technology,2020,54(24):16231-16239. [18] NETA P,HUIE R E,ROSS A B.Rate constants for reactions of inorganic radicals in aqueous solution[J].Journal of Physical and Chemical Reference Data,1988,17(3):1027-1284. doi: 10.1063/1.555808 [19] PESTOVSKY O,BAKAC A.Reactivity of aqueous Fe(Ⅳ) in hydride and hydrogen atom transfer reactions[J].Journal of the American Chemical Society,2004,126(42):13757-13764. doi: 10.1021/ja0457112 [20] MÁRTIRE D O,CAREGNATO P,FURLONG J,et al.Kinetic study of the reactions of oxoiron(Ⅳ) with aromatic substrates in aqueous solutions[J].International Journal of Chemical Kinetics,2002,34(8):488-494. doi: 10.1002/kin.10076 [21] BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical Review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals (·OH/·O− in aqueous solution[J].Journal of Physical and Chemical Reference Data,1988,17(2):513-886. doi: 10.1063/1.555805 [22] PESTOVSKY O,BAKAC A.Aqueous ferryl(Ⅳ) ion:kinetics of oxygen atom transfer to substrates and oxo exchange with solvent water[J].Inorganic Chemistry,2006,45(2):814-820. doi: 10.1021/ic051868z [23] KISHORE K,ASMUS K D.Radical cations from one-electron oxidation of aliphatic sulphoxides in aqueous solution:a radiation chemical study[J].Journal of the Chemical Society,1989(12):2079. doi: 10.1039/p29890002079 [24] BARDOUKI H,Da ROSA M B,MIHALOPOULOS N,et al.Kinetics and mechanism of the oxidation of dimethylsulfoxide (DMSO) and methanesulfinate (MSI−) by OH radicals in aqueous medium[J].Atmospheric Environment,2002,36(29):4627-4634. doi: 10.1016/S1352-2310(02)00460-0 [25] WANG Z,YU Y Y,GUO Q,et al.Nano- and micro-scale zerovalent iron-activated peroxydisulfate for methyl phenyl sulfoxide probe transformation in aerobic water:quantifying the relative roles of SO4•−,Fe(Ⅳ),and •OH[J].Water Research,2022,223:119014. doi: 10.1016/j.watres.2022.119014 [26] ACERO J L,STEMMLER K,von GUNTEN U.Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: a predictive tool for drinking water treatment[J].Environmental Science & Technology,2000,34(4):591-597. [27] LIANG C J,SU H W.Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J].Industrial & Engineering Chemistry Research,2009,48(11):5558-5562. [28] WACŁAWEK S,LUTZE H V,GRÜBEL K,et al.Chemistry of persulfates in water and wastewater treatment:a review[J].Chemical Engineering Journal,2017,330:44-62. doi: 10.1016/j.cej.2017.07.132 [29] XIAO R Y,YE T T,WEI Z S,et al.Quantitative structure-activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical[J].Environmental Science & Technology,2015,49(22):13394-13402. [30] SAWYER D T,VALENTINE J S.How super is superoxide?[J].Accounts of Chemical Research,1981,14(12):393-400. doi: 10.1021/ar00072a005 [31] YI Q Y,JI J H,SHEN B,et al.Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment[J].Environmental Science & Technology,2019,53(16):9725-9733. [32] WU C L,LINDEN K G.Phototransformation of selected organophosphorus pesticides:roles of hydroxyl and carbonate radicals[J].Water Research,2010,44(12):3585-3594. doi: 10.1016/j.watres.2010.04.011 [33] LEI Y,CHENG S S,LUO N,et al.Rate constants and mechanisms of the reactions of Cl• and Cl2•− with trace organic contaminants[J].Environmental Science & Technology,2019,53(19):11170-11182. [34] DAI N,MITCH W A.Relative importance of N-nitrosodimethylamine compared to total N-nitrosamines in drinking waters[J].Environmental Science & Technology,2013,47(8):3648-3656. [35] 李怡冰,李涵,黄文轩,等.生物炭的制备及其在强化电子传递和催化性能等方面的研究进展[J].环境科学研究,2021,34(5):1157-1167. doi: 10.13198/j.issn.1001-6929.2020.10.01LI Y B,LI H,HUANG W X,et al.Research progress on the biochar production and its applications in enhancing electron transport and catalysis performance[J].Research of Environmental Sciences,2021,34(5):1157-1167. doi: 10.13198/j.issn.1001-6929.2020.10.01 [36] WANG Z,QIU W,PANG S Y,et al.Aqueous iron(Ⅳ)-oxo complex:an emerging powerful reactive oxidant formed by iron(Ⅱ)-based advanced oxidation processes for oxidative water treatment[J].Environmental Science & Technology,2022,56(3):1492-1509. [37] AL-NU'AIRAT J,DLUGOGORSKI B Z,GAO X P,et al.Reaction of phenol with singlet oxygen[J].Physical Chemistry Chemical Physics,2018,21(1):171-183. [38] SHARMA V K,FENG M B,DIONYSIOU D D,et al.Reactive high-valent iron intermediates in enhancing treatment of water by ferrate[J].Environmental Science & Technology,2022,56(1):30-47. [39] 曾丹,王彬,白英臣,等.碱溶液中DMPO-OH加合物EPR信号形成研究[J].环境科学研究,2019,32(3):500-506. doi: 10.13198/j.issn.1001-6929.2018.09.21ZENG D,WANG B,BAI Y C,et al.Study on EPR signal formation of DMPO-OH adduct in alkali solution[J].Research of Environmental Sciences,2019,32(3):500-506. doi: 10.13198/j.issn.1001-6929.2018.09.21 [40] JIANG B,WANG X L,LIU Y K,et al.The roles of polycarboxylates in Cr(Ⅵ)/sulfite reaction system:involvement of reactive oxygen species and intramolecular electron transfer[J].Journal of Hazardous Materials,2016,304:457-466. doi: 10.1016/j.jhazmat.2015.11.011 [41] CLÉMENT J L,FERRÉ N,SIRI D,et al.Assignment of the EPR spectrum of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) superoxide spin adduct[J].The Journal of Organic Chemistry,2005,70(4):1198-1203. doi: 10.1021/jo048518z [42] NARDI G,MANET I,MONTI S,et al.Scope and limitations of the TEMPO/EPR method for singlet oxygen detection:the misleading role of electron transfer[J].Free Radical Biology and Medicine,2014,77:64-70. doi: 10.1016/j.freeradbiomed.2014.08.020 [43] WARWAR N,MOR A,FLUHR R,et al.Detection and imaging of superoxide in roots by an electron spin resonance spin-probe method[J].Biophysical Journal,2011,101(6):1529-1538. doi: 10.1016/j.bpj.2011.07.029 [44] SEGAL B G,KAPLAN M,FRAENKEL G K.Measurement of g values in the electron spin resonance spectra of free radicals[J].The Journal of Chemical Physics,1965,43(12):4191-4200. doi: 10.1063/1.1696676 [45] LAWRENCE A,JONES C M,WARDMAN P,et al.Evidence for the role of a peroxidase compound Ⅰ-type intermediate in the oxidation of glutathione,NADH,ascorbate,and dichlorofluorescin by cytochrome c/H2O2:implications for oxidative stress during apoptosis[J].The Journal of Biological Chemistry,2003,278(32):29410-29419. doi: 10.1074/jbc.M300054200 [46] YANG Y,BANERJEE G,BRUDVIG G W,et al.Oxidation of organic compounds in water by unactivated peroxymonosulfate[J].Environmental Science & Technology,2018,52(10):5911-5919. [47] WANG L L,LAN X,PENG W Y,et al.Uncertainty and misinterpretation over identification,quantification and transformation of reactive species generated in catalytic oxidation processes:a review[J].Journal of Hazardous Materials,2021,408:124436. doi: 10.1016/j.jhazmat.2020.124436 [48] GAO L W,GUO Y,ZHAN J H,et al.Assessment of the validity of the quenching method for evaluating the role of reactive species in pollutant abatement during the persulfate-based process[J].Water Research,2022,221:118730. doi: 10.1016/j.watres.2022.118730 [49] RAO P S,HAYON E.Redox potentials of free radicals.Ⅳ:superoxide and hydroperoxy radicals •O2− and HO2•[J].The Journal of Physical Chemistry,1975,79(4):397-402. doi: 10.1021/j100571a021 [50] REN W,CHENG C,SHAO P H,et al.Origins of electron-transfer regime in persulfate-based nonradical oxidation processes[J].Environmental Science & Technology,2022,56(1):78-97. [51] GUO Y,ZHANG Y X,YU G,et al.Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation:the probe approach versus the scavenger approach[J].Applied Catalysis B:Environmental,2021,280:119418. doi: 10.1016/j.apcatb.2020.119418 [52] PERALTA E,ROA G,HERNANDEZ-SERVIN J A,et al.Hydroxyl radicals quantification by UV spectrophotometry[J].Electrochimica Acta,2014,129:137-141. doi: 10.1016/j.electacta.2014.02.047 [53] LI H,SUN S T,JI H D,et al.Enhanced activation of molecular oxygen and degradation of tetracycline over Cu-S4 atomic clusters[J].Applied Catalysis B:Environmental,2020,272:118966. doi: 10.1016/j.apcatb.2020.118966 [54] SHANEI A,SHANEI M M.Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method[J].Ultrasonics Sonochemistry,2017,34:45-50. doi: 10.1016/j.ultsonch.2016.05.010 [55] BORTOLOZZI R,von GRADOWSKI S,IHMELS H,et al.Selective ratiometric detection of H2O2 in water and in living cells with boronobenzo[b]quinolizinium derivatives[J].Chemical Communications,2014,50(60):8242-8245. doi: 10.1039/C4CC02283A [56] BARJA G.The quantitative measurement of H2O2 generation in isolated mitochondria[J].Journal of Bioenergetics and Biomembranes,2002,34(3):227-233. doi: 10.1023/A:1016039604958 [57] KIM S,TACHIKAWA T,FUJITSUKA M,et al.Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy[J].Journal of the American Chemical Society,2014,136(33):11707-11715. doi: 10.1021/ja504279r [58] SAHNI M,LOCKE B R.Quantification of reductive species produced by high voltage electrical discharges in water[J].Plasma Processes and Polymers,2006,3(4/5):342-354. [59] ZRINYI N,PHAM A L T.Oxidation of benzoic acid by heat-activated persulfate:effect of temperature on transformation pathway and product distribution[J].Water Research,2017,120:43-51. doi: 10.1016/j.watres.2017.04.066 [60] PESTOVSKY O,STOIAN S,BOMINAAR E L,et al.Aqueous FeⅣ=O:spectroscopic identification and oxo-group exchange[J].Angewandte Chemie International Edition,2005,44(42):6871-6874. doi: 10.1002/anie.200502686 [61] LEE Y,GERRITY D,LEE M J,et al.Prediction of micropollutant elimination during ozonation of municipal wastewater effluents:use of kinetic and water specific information[J].Environmental Science & Technology,2013,47(11):5872-5881. [62] HUANG Z L,JI Z P,YIN P C,et al.Salicylic acid impregnated activated carbon fiber paper:an effective platform for the simple and sensitive detection of hydroxyl radicals in the atmosphere[J].Electrochemistry Communications,2019,100:113-116. doi: 10.1016/j.elecom.2019.02.008 [63] HESS C.in situ Raman spectroscopy of catalysts:examples from current research[J].Topics in Catalysis,2013,56(15):1593-1600. [64] HUA J,FEI Y H,FENG C H,et al.Anoxic oxidation of As(Ⅲ) during Fe(Ⅱ)-induced goethite recrystallization:evidence and importance of Fe(Ⅳ) intermediate[J].Journal of Hazardous Materials,2022,421:126806. doi: 10.1016/j.jhazmat.2021.126806 [65] MACHALA L,PROCHÁZKA V,MIGLIERINI M,et al.Direct evidence of Fe(Ⅴ) and Fe(Ⅳ) intermediates during reduction of Fe(Ⅵ) to Fe(Ⅲ):a nuclear forward scattering of synchrotron radiation approach[J].Physical Chemistry Chemical Physics:PCCP,2015,17(34):21787-21790. doi: 10.1039/C5CP03784K [66] ZHU B Z,SHEN C,GAO H Y,et al.Intrinsic chemiluminescence production from the degradation of haloaromatic pollutants during environmentally-friendly advanced oxidation processes:mechanism,structure-activity relationship and potential applications[J].Journal of Environmental Sciences,2017,62:68-83. doi: 10.1016/j.jes.2017.06.035 [67] LUO S,WEI Z S,SPINNEY R,et al.Quantitative structure-activity relationships for reactivities of sulfate and hydroxyl radicals with aromatic contaminants through single-electron transfer pathway[J].Journal of Hazardous Materials,2018,344:1165-1173. doi: 10.1016/j.jhazmat.2017.09.024 [68] GUAN C T,JIANG J,PANG S Y,et al.Oxidation kinetics of bromophenols by nonradical activation of peroxydisulfate in the presence of carbon nanotube and formation of brominated polymeric products[J].Environmental Science & Technology,2017,51(18):10718-10728. [69] SALTER-BLANC A J,BYLASKA E J,LYON M A,et al.Structure-activity relationships for rates of aromatic amine oxidation by Manganese dioxide[J].Environmental Science & Technology,2016,50(10):5094-5102. [70] LEE Y,von GUNTEN U.Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment[J].Water Research,2012,46(19):6177-6195. doi: 10.1016/j.watres.2012.06.006 -