留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物活性物质改善水环境中重金属对生物的不利影响及其机制

李云霞 滕苗苗 周凌峰 孙嘉祺 赵李辉 赵文甜 吴丰昌

李云霞, 滕苗苗, 周凌峰, 孙嘉祺, 赵李辉, 赵文甜, 吴丰昌. 生物活性物质改善水环境中重金属对生物的不利影响及其机制[J]. 环境科学研究, 2023, 36(4): 823-835. doi: 10.13198/j.issn.1001-6929.2023.03.01
引用本文: 李云霞, 滕苗苗, 周凌峰, 孙嘉祺, 赵李辉, 赵文甜, 吴丰昌. 生物活性物质改善水环境中重金属对生物的不利影响及其机制[J]. 环境科学研究, 2023, 36(4): 823-835. doi: 10.13198/j.issn.1001-6929.2023.03.01
LI Yunxia, TENG Miaomiao, ZHOU Lingfeng, SUN Jiaqi, ZHAO Lihui, ZHAO Wentian, WU Fengchang. Bioactive Substances Ameliorate Adverse Effects of Heavy Metals on Organisms in Aquatic Environments and Its Mechanism[J]. Research of Environmental Sciences, 2023, 36(4): 823-835. doi: 10.13198/j.issn.1001-6929.2023.03.01
Citation: LI Yunxia, TENG Miaomiao, ZHOU Lingfeng, SUN Jiaqi, ZHAO Lihui, ZHAO Wentian, WU Fengchang. Bioactive Substances Ameliorate Adverse Effects of Heavy Metals on Organisms in Aquatic Environments and Its Mechanism[J]. Research of Environmental Sciences, 2023, 36(4): 823-835. doi: 10.13198/j.issn.1001-6929.2023.03.01

生物活性物质改善水环境中重金属对生物的不利影响及其机制

doi: 10.13198/j.issn.1001-6929.2023.03.01
基金项目: 国家重点研发计划项目(No.2021YFC3201000);国家自然科学基金项目(No.42207335)
详细信息
    作者简介:

    李云霞(1998-),女,河南周口人,liyunxia98027@163.com

    通讯作者:

    ②滕苗苗(1990-),女,山东兖州人,助理研究员,博士,主要从事环境污染物的毒理学研究和风险评估研究,tengmiao0603@163.com

    ①吴丰昌(1964-),男,浙江衢州人,中国工程院院士,研究员,博士,主要从事湖泊污染控制理论技术与应用及水质基准与风险评估研究,wufengchang@vip.skleg.cn

  • 中图分类号: X171

Bioactive Substances Ameliorate Adverse Effects of Heavy Metals on Organisms in Aquatic Environments and Its Mechanism

Funds: National Key Research and Development Program of China (No.2021YFC3201000);National Natural Science Foundation of China (No.42207335)
  • 摘要: 重金属具有高毒性和不可降解等特点,对水生生物的生长、繁殖等产生危害,进而影响水生态系统的平衡. 最近研究表明,自然环境中存在多种生物活性物质,或通过人工添加的方式改善重金属对生物的不利影响. 这些研究对认识水环境中的自然净化、生态修复与水生态健康评估具有重要价值,但目前对生物活性物质改善作用的总结和深入机理研究还较少. 因此,本文调查并总结了多种生物活性物质对水生生物重金属胁迫的改善作用,研究其可能的改善机制. 对水生植物而言,生物活性物质主要通过调节植物抗坏血酸-谷胱甘肽(AsA-GSH)循环、叶黄素循环以及维持植物光合色素平衡来改善重金属毒性;对于水生动物,生物活性物质主要通过缓解氧化应激、螯合重金属离子和维持肠道健康来减轻重金属毒性. 因此,本文能为预防和改善水环境中重金属对生物的不利影响提供支持,并为进一步研究重金属的自然修复技术、污染控制及水质改善等方面提供科学依据,对水产养殖中生物的日常管理、生态系统的风险评估具有重要的指导价值.

     

  • 图  1  生物活性物质对重金属诱导的水生植物毒性的改善机制

    注:红点代表重金属,绿点代表生物活性物质. 红色和绿色箭头分别代表重金属和生物活性物质引起的相关指标的升高或降低. 实线和虚线分别代表重金属和生物活性物质引起的一系列作用.

    Figure  1.  Ameliorated mechanisms of bioactive substances on the toxicity of aquatic plants induced by heavy metals

    图  2  生物活性物质对重金属引起水生动物氧化应激的改善机制

    注:红点代表重金属,绿点代表生物活性物质. 红色、绿色箭头分别代表重金属和生物活性物质引起的相关指标的升高或降低,黑色箭头代表相关指标的动态变化. 红色闪电代表危害,绿色盾牌代表改善、防御.

    Figure  2.  Ameliorated mechanisms of bioactive substances on oxidative stress of aquatic animals caused by heavy metals

    图  3  生物活性物质对重金属的螯合机制

    注:蓝色圆球代表重金属. 水滴代表生物活性物质. 红色和绿色箭头分别代表重金属和生物活性物质引起的相关指标的变化.

    Figure  3.  Chelating mechanism of bioactive substances to heavy metals

    图  4  益生菌对重金属引起水生动物肠道损伤的改善机制

    注:红点代表重金属. 红色和绿色箭头分别代表重金属和益生菌引起相关指标的变化;黑色箭头代表相关指标的动态变化. 红色和绿色细菌分别代表有害菌和有益菌.

    Figure  4.  Ameliorated mechanisms of probiotics on intestinal injury of aquatic animals caused by heavy metals

    表  1  生物活性物质对重金属毒性的改善效应

    Table  1.   Amelioration of bioactive substances on toxic effects of heavy metals

    污染物污染物剂量(暴露方法和持续时间)物种生物活性物质生物活性物质剂量(暴露方法和持续时间)改善效应数据来源
    Pb 0.112 mg/L(水体,24 h) 草鱼肾细胞 VC 10.56、14.08、17.6、21.12、24.64 mg/L(水体,24 h) 增强细胞活力 文献[23]
    7.34 mg/L(水体,70 d) 尼罗罗非鱼 VE 200 mg/kg(饮食,70 d) 调节与氧化应激相关酶的表达 文献[24]
    7.34 mg/L(水体,70 d) 尼罗罗非鱼 Se 4 mg/kg(饮食,70 d) 调节与氧化应激相关酶的表达 文献[24]
    1 mg/L(水体,28 d) 尼罗罗非鱼 植物乳杆菌CCFM8661 108 CFU/g(饮食,28 d) 改善氧化应激,恢复消化酶的活性,逆转先天免疫参数的改变,减少外周血红细胞核的异常 文献[25]
    1 mg/L(水体,42 d) 鲤鱼 罗伊氏乳酸杆菌P16 108 CFU/g(饮食,42 d) 降低死亡率和组织积累,提高生长性能,改善氧化应激,逆转血液生化参数的改变,改善先天免疫参数,恢复肠道酶活性,逆转肠道微生物群的变化 文献[26]
    10 mg/kg(饮食,7 d) 日本沼虾 牛磺酸 15 000 mg/kg(饮食,7 d) 改善氧化应激 文献[27]
    1 mg/L(水体,1-5 d) 斑马鱼 绿原酸及其类似物 35.431 mg/L绿原酸、新绿原酸以及17.716 mg/L隐绿原酸(水体,1~5 d) 改善氧化应激、自噬以及发育神经毒性 文献[28]
    Cd 5 mg/L(水体,45 d) 尼罗罗非鱼 VC 500 mg/kg(饮食,45 d) 调节肝脏抗氧化基因的转录,抑制病理损伤 文献[29]
    5 mg/L(水体,28 d) 尼罗罗非鱼 Se 1 mg/kg(饮食,28 d) 促进生长性能,提高免疫和抗氧化能力,抑制病理损伤 文献[30]
    1 mg/L(水体,28 d) 尼罗罗非鱼 植物乳杆菌CCFM8610 108 CFU/g(饮食,28 d) 促进生长性能,缓解组织氧化应激,逆转血液生化参数的变化,调节肠道微生物区系 文献[31]
    2.24 mg/kg(腹腔注射,4 d) 草鱼 VE 20 mg/kg(腹腔注射,4、8、12、16 d) 降低Cd含量,减轻组织损伤,降低凋亡百分比和恢复免疫相关基因的转录表达 文献[32]
    2.24 mg/kg(腹腔注射,4 d) 草鱼 MT 2.1 mg/kg(腹腔注射,4、8、12、16 d) 降低Cd含量,减轻组织损伤,降低凋亡百分比和恢复免疫相关基因的转录表达 文献[32]
    0.336、1.12 mg/L(水体,2、7、14 d) 斑马鱼 聚天冬氨酸 25 mg/L(水体,2、7、14 d) 降低肝脏和脑中的Cd含量,改善氧化应激和细胞凋亡,减轻神经毒性 文献[33]
    40 mg/kg(饮食,30 d) 虹鳟鱼 Se 10、40 mg/kg(饮食,30 d) 降低Cd含量,改善氧化应激和形态计量学损伤 文献[34]
    0.05、0.1、0.5 mg/L(水体,14 d) 华溪蟹 Zn 0.1、1 mg/L(水体,14 d) 改善睾丸氧化应激和抗氧化状态来减轻生殖毒性 文献[8]
    下载: 导出CSV
     续表 1
    污染物污染物剂量(暴露方法和持续时间)物种生物活性物质生物活性物质剂量(暴露方法和持续时间)改善效应数据来源
    Cd 1、2 mg/L(水体,28 d) 异育银鲫 蜡样芽胞杆菌 108 CFU/g(饮食,28 d) 减少血液中的Cd积累,调节血液生化参数和免疫相关基因表达 文献[35]
    0.5 mg/L(水体,56 d) 鲤鱼 凝结芽孢杆菌SCC-19 107、108、109 CFU/g(饮食,56 d) 改善氧化应激,改变肠道微生物群多样性和组成,降低病原体的丰度,并增加有益菌的丰度 文献[36]
    0.5 mg/L(水体,60 d) 鲤鱼 凝结芽孢杆菌SCC-19 108 CFU/g(饮食,60 d) 提高生长性能,减少组织积累,恢复非特异性免疫和抗氧化能力 文献[37]
    300 mg/kg(饮食,42 d) 褐点石斑鱼 葡萄籽原花青素 400、800 mg/kg(饮食,42 d) 提高生长性能、钙磷水平、消化酶活性和肠道抗氧化能力 文献[38]
    10 mg/L(水体,5 d) 菹草 5、10、15、20 mg/L(水体,5 d) 提高水生植物体内的光合色素含量、保护酶系统和维持体内矿质元素含量的平衡 文献[39]
    10 mg/L(水体,5 d) 伊乐藻 5、10、15、20 mg/L(水体,5 d) 提高水生植物体内的光合色素含量、保护酶系统和维持体内矿质元素含量的平衡 文献[39]
    Cr 5.2、7.8 mg/L(水体,4 d) 念珠藻鱼腥藻 吲哚-3乙酸 0.057 mg/L(水体,4 d) 降低Cr积累和活性氧水平,调节色素系统、光合作用、提高抗坏血酸-谷胱甘肽循环的效率 文献[6]
    5.2、7.8 mg/L(水体,4 d) 念珠藻鱼腥藻 激动素 0.002 mg/L(水体,4 d) 降低Cr积累和活性氧水平,调节色素系统、光合作用、提高抗坏血酸-谷胱甘肽循环的效率 文献[6]
    120、240 mg/kg(饮食,28 d) 草鱼 沙葱黄酮 40 mg/kg(饮食,28 d 降低Cr的积累,降低组织中的丙二醛含量和炎症蛋白的表达,增加紧密连接蛋白的表达 文献[40]
    Cu 0.038、0.077 mg/L(水体,56 d) 矛尾复鰕虎鱼 Fe 0.063 mg/L(水体,56 d) 减轻脂肪沉积 文献[41]
    0.7 mg/L(水体,4 d) 草鱼 谷氨酸 8 000 mg/kg(饮食,56 d) 减轻Cu诱导的肠细胞氧化损伤 文献[42]
    0.32 mg/L(水体,70 d) 黄颡鱼 Zn 3.2mg/L(水体,70 d) 促进脂噬,减轻脂质积累 文献[43]
    Hg 0.05 mg/L(水体,21 d) 尼罗罗非鱼 β-胡萝卜素 0、40、100 mg/kg(饮食,21 d) 降低免疫抑制应激反应 文献[44]
    Fe 9.5 mg/L(水体,56 d) 斑点叉尾鮰 VC 143、573 mg/kg(饮食,56 d) 改善氧化应激,改善组织病理学变化 文献[45]
    Ag 1.5 mg/L(水体,10 d) 斑马鱼 VE 100、200、400 mg/kg(饮食,10 d) 减轻细胞损伤,改善氧化应激和免疫抑制 文献[46]
    Al 2.73 mg/L(水体,28 d) 罗非鱼 植物乳杆菌CCFM639 108 CFU/g(饮食,28 d) 降低死亡率和组织积累,恢复相关生化参数的变化,减轻肝脏改善氧化应激和组织病理学变化 文献[47]
    下载: 导出CSV
  • [1] JAISHANKAR M,TSETEN T,ANBALAGAN N,et al.Toxicity,mechanism and health effects of some heavy metals[J].Interdisciplinary Toxicology,2014,7(2):60-72. doi: 10.2478/intox-2014-0009
    [2] FU J,HU X,TAO X C,et al.Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake,China[J].Chemosphere,2013,93(9):1887-1895. doi: 10.1016/j.chemosphere.2013.06.061
    [3] SONG F M,GE H G,ZHAO H G,et al.Pollution risk assessment of heavy metals in the sediments of upstream Hanjiang River,China[J].Earth Science Informatics,2021,14(2):655-668. doi: 10.1007/s12145-020-00552-8
    [4] GHOSH S,DISSANAYAKE K,ASOKAN S,et al.Lead (Pb2+) ion sensor development using optical fiber gratings and nanocomposite materials[J].Sensors and Actuators B:Chemical,2022,364:131818. doi: 10.1016/j.snb.2022.131818
    [5] AYDINALP C,MARINOVA S.The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa)[J].Bulgarian Journal of Agricultural Science,2009,15(4):347-350.
    [6] TIWARI S,PATEL A,PRASAD S M.Auxin and cytokinin alleviate chromium-induced oxidative stress in Nostoc muscorum and Anabaena sp. by modulating ascorbate-glutathione cycle[J].Journal of Plant Growth Regulation,2021,40:2743-2758.
    [7] FAN W H,ZHANG Y,LIU S,et al.Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water[J].Journal of Hazardous Materials,2020,389:122155-122165. doi: 10.1016/j.jhazmat.2020.122155
    [8] LIU J,WANG E M,JING W X,et al.Mitigative effects of zinc on cadmium-induced reproductive toxicity in the male freshwater crab Sinopotamon henanense[J].Environmental Science and Pollution Research,2020,27(14):16282. doi: 10.1007/s11356-020-08074-y
    [9] 罗紫蝶,郭少娟,曾晨,等.镉暴露对斑马鱼胚胎发育的毒性效应研究[J].环境科学研究,2022,35(5):1315-1322.

    LUO Z D,GUO S J,ZENG C,et al.Toxic effects of cadmium exposure on zebrafish embryo development[J].Research of Environmental Sciences,2022,35(5):1315-1322.
    [10] 杨舒萍,杨帆,董四君,等.纳米二氧化钛增强五价砷对丰年虾的慢性毒性作用[J].环境科学研究,2021,34(12):3002-3011. doi: 10.13198/j.issn.1001-6929.2021.09.04

    YANG S P,YANG F,DONG S J,et al.Titanium dioxide nanoparticles enhanced chronic toxic effects of arsenate in Artemia salina[J].Research of Environmental Sciences,2021,34(12):3002-3011. doi: 10.13198/j.issn.1001-6929.2021.09.04
    [11] 马娇阳,保欣晨,张振宁,等.正常肝细胞和肝癌细胞对镉暴露毒性响应差异分析[J].环境科学研究,2022,35(1):257-264.

    MA J Y,BAO X C,ZHANG Z N,et al.Cellular responses of normal and cancerous hepatic cells to cadmium exposure[J].Research of Environmental Sciences,2022,35(1):257-264.
    [12] WASEEM A,ARSHAD J.A review of Human Biomonitoring studies of trace elements in Pakistan[J].Chemosphere,2016,163:153-176. doi: 10.1016/j.chemosphere.2016.08.011
    [13] DUAN H,YU L L,TIAN F W,et al.Gut microbiota:a target for heavy metal toxicity and a probiotic protective strategy[J].Science of the Total Environment,2020,742:140429. doi: 10.1016/j.scitotenv.2020.140429
    [14] ANITHA,JOSE,JOSEPH,et al.Toxic heavy metals in human blood in relation to certain food and environmental samples in Kerala,South India[J].Environmental Science & Pollution Research,2018,25(8):7946-7953.
    [15] ALI H,KHAN E.Environmental chemistry in the twenty-first century[J].Environmental Chemistry Letters,2017,15(2):329-346. doi: 10.1007/s10311-016-0601-3
    [16] ZAMORA-LEDEZMA C,NEGRETE-BOLAGAY D,FIGUEROA F,et al.Heavy metal water pollution:a fresh look about hazards,novel and conventional remediation methods[J].Environmental Technology & Innovation,2021,22:101504.
    [17] 陈天,包宁颖,杜崇宣,等.重金属污染河流生态修复区挺水植物对重金属的吸收特性[J].环境科学研究,2020,33(9):2110-2117. doi: 10.13198/j.issn.1001-6929.2020.02.06

    CHEN T,BAO N Y,DU C X,et al.Absorption characteristics of heavy metals by emergent plants from polluted river in ecological restoration areas[J].Research of Environmental Sciences,2020,33(9):2110-2117. doi: 10.13198/j.issn.1001-6929.2020.02.06
    [18] ZHAI Q X,NARBAD A,CHEN W.Dietary strategies for the treatment of cadmium and lead toxicity[J].Nutrients,2015,7(1):552-571. doi: 10.3390/nu7010552
    [19] CAO F,CHENG M H,HU L Q,et al.Natural products action on pathogenic cues in autoimmunity:efficacy in systemic lupus erythematosus and rheumatoid arthritis as compared to classical treatments[J].Pharmacological Research,2020,160:105054. doi: 10.1016/j.phrs.2020.105054
    [20] CHANG C H,LI J H,SU Y J,et al.Protein particle-based vehicles for encapsulation and delivery of nutrients:fabrication,digestion,and release properties[J].Food Hydrocolloids,2022,123:106963. doi: 10.1016/j.foodhyd.2021.106963
    [21] LIU T T,ZHAO Y,WU N,et al.Egg white protein-based delivery system for bioactive substances:a review[J].Critical Reviews in Food Science and Nutrition,2022,44:1-21.
    [22] YANG T,LI C,XUE W T,et al.Natural immunomodulating substances used for alleviating food allergy[J].Critical Reviews in Food Science and Nutrition,2021,44:1-19.
    [23] LIU J,ZHANG P J,GAO C S,et al.Effect of vitamin C on lead-induced cell viability levels,oxidative stress,and immune-related gene expression in grass carp kidney cells[J].North American Journal of Aquaculture,2021,83(3):218-227. doi: 10.1002/naaq.10194
    [24] HASHISH E A,ELGAML S A,EL-MURR A,et al.Nephroprotective and antioxidant significance of selenium and α-tocopherol on lead acetate-induced toxicity of Nile tilapia (Oreochromis niloticus)[J].Fish Physiology and Biochemistry,2015,41(3):651-660. doi: 10.1007/s10695-015-0035-z
    [25] ZHAI Q X,WANG H C,TIAN F W,et al.Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus)[J].Aquaculture Research,2017,48(9):5094-5103. doi: 10.1111/are.13326
    [26] GIRI S S,YUN S,JUN J W,et al.Therapeutic effect of intestinal autochthonous lactobacillus reuteri p16 against waterborne lead toxicity in Cyprinus carpio[J].Frontiers in Immunology,2018,9:1824. doi: 10.3389/fimmu.2018.01824
    [27] DING Z L,KONG Y Q,QI C L,et al.The alleviative effects of taurine supplementation on growth,antioxidant enzyme activities,hepatopancreas morphology and mRNA expression of heat shock proteins in freshwater prawn Macrobrachium nipponense (De Haan) exposed to dietary lead stress[J].Aquaculture Nutrition,2021,27:2195-2204. doi: 10.1111/anu.13354
    [28] JI X N,WANG B K,PAUDEL Y,et al.Protective effect of chlorogenic acid and its analogues on lead-induced developmental neurotoxicity through modulating oxidative stress and autophagy[J].Frontiers in Molecular Biosciences,2021,8:655549. doi: 10.3389/fmolb.2021.655549
    [29] EL-SAYED Y S,EL-GAZZAR A M,EL-NAHAS A F,et al.Vitamin C modulates cadmium-induced hepatic antioxidants' gene transcripts and toxicopathic changes in Nile tilapia,Oreochromis niloticus[J].Environmental Science and Pollution Research International,2016,23(2):1664-1670. doi: 10.1007/s11356-015-5412-8
    [30] ABU-ELALA N M,SHAALAN M,ALI S E,et al.Immune responses and protective efficacy of diet supplementation with selenium nanoparticles against cadmium toxicity in Oreochromis niloticus[J].Aquaculture Research,2021,52(8):3677-3686. doi: 10.1111/are.15212
    [31] ZHAI Q X,YU L L,LI T Q,et al.Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure[J].Antonie van Leeuwenhoek,2017,110(4):501-513. doi: 10.1007/s10482-016-0819-x
    [32] HUANG X L,FENG Y,FAN W,et al.Potential ability for metallothionein and vitamin E protection against cadmium immunotoxicity in head kidney and spleen of grass carp (Ctenopharyngodon idellus)[J].Ecotoxicology and Environmental Safety,2019,170:246-252. doi: 10.1016/j.ecoenv.2018.11.134
    [33] 田雪.聚天冬氨酸缓解镉对鱼毒性的机制研究[D].北京:北京化工大学,2018.
    [34] JAMWAL A,LEMIRE D,DRIESSNACK M,et al.Interactive effects of chronic dietary selenomethionine and cadmium exposure in rainbow trout (Oncorhynchus mykiss):a preliminary study[J].Chemosphere,2018,197:550-559. doi: 10.1016/j.chemosphere.2018.01.087
    [35] WANG N,GAO C S,ZHANG P J,et al.Effect of Bacillus cereus against cadmium induced hematological disturbances and immunosuppression in Carassius auratus gibelio[J].Fish & Shellfish Immunology,2019,89:141-148.
    [36] CHANG X L,KANG M R,SHEN Y H,et al.Bacillus coagulans SCC-19 maintains intestinal health in cadmium-exposed common carp (Cyprinus carpio L.) by strengthening the gut barriers,relieving oxidative stress and modulating the intestinal microflora[J].Ecotoxicology and Environmental Safety,2021,228:112977. doi: 10.1016/j.ecoenv.2021.112977
    [37] CHANG X L,CHEN Y Y,FENG J C,et al.Amelioration of Cd-induced bioaccumulation,oxidative stress and immune damage by probiotic Bacillus coagulans in common carp (Cyprinus carpio L.)[J].Aquaculture Reports,2021,20:100678. doi: 10.1016/j.aqrep.2021.100678
    [38] JIA Z Y,TAN Y T,LIU Y M,et al.Grape seed proanthocyanidins alleviate the negative effects of dietary cadmium on pearl gentian grouper (Epinephelus fuscoguttatus female × Epinephelus lanceolatus male)[J].The Israeli Journal of Aquaculture-Bamidgeh,2021,73:1427267.
    [39] 王春涛.稀土钕减轻镉对水生植物胁迫的研究[D].南京:南京师范大学,2005.
    [40] LEI Z,BDY C,JLZ D,et al.Amelioration of hexavalent chromium-induced bioaccumulation,oxidative stress,tight junction proteins and immune-related signaling factors by Allium mongolicum Regel flavonoids in Ctenopharyngodon idella[J].Fish & Shellfish Immunology,2020,106:993-1003.
    [41] CHEN F,HUANG C,LUO Z,et al.Fe reduced hepatic lipid deposition in Synechogobius hasta exposed to waterborne Cu[J].Aquatic Toxicology,2016,174:134-145. doi: 10.1016/j.aquatox.2016.02.022
    [42] JIANG J,WU X Y,ZHOU X Q,et al.Glutamate ameliorates copper-induced oxidative injury by regulating antioxidant defences in fish intestine[J].The British Journal of Nutrition,2016,116(1):70-79. doi: 10.1017/S0007114516001732
    [43] WEI X L,HOGSTRAND C,CHEN G H,et al.Zn induces lipophagy via the deacetylation of beclin1 and alleviates Cu-induced lipotoxicity at their environmentally relevant concentrations[J].Environmental Science and Technology,2021,55(8):4943-4953. doi: 10.1021/acs.est.0c08609
    [44] ELSEADY Y,ZAHRAN E.Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus)[J].Fish Physiology and Biochemistry,2013,39(4):1031-1041. doi: 10.1007/s10695-012-9760-8
    [45] YADAV A K,SINHA A K,EGNEW N,et al.Potential amelioration of waterborne iron toxicity in channel catfish (Ictalurus punctatus) through dietary supplementation of vitamin C[J].Ecotoxicology and Environmental Safety,2020,205:111337. doi: 10.1016/j.ecoenv.2020.111337
    [46] HEDAYATI S A,FARSANI H G,NASERABAD S S,et al.Protective effect of dietary vitamin E on immunological and biochemical induction through silver nanoparticles (AgNPs) inclusion in diet and silver salt (AgNO(3)) exposure on Zebrafish (Danio rerio)[J].Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP,2019,222:100-107.
    [47] YU L L,ZHAI Q X,ZHU J M,et al.Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia[J].Ecotoxicology and Environmental Safety,2017,143:307-314. doi: 10.1016/j.ecoenv.2017.05.023
    [48] KLAASSEN C D,LIU J,CHOUDHURI S.et al.An intracellular protein to protect against cadmium toxicity[J].Annual Review of Pharmacology and Toxicology,1999,39(1):267-294. doi: 10.1146/annurev.pharmtox.39.1.267
    [49] DUAN Y J,DUAN J,FENG Y,et al.Hepatoprotective activity of vitamin E and metallothionein in cadmium-induced liver injury in ctenopharyngodon idellus[J].Oxidative Medicine and Cellular Longevity,2018,2018:1-12.
    [50] YU Y H,ZHANG J J,WANG J,et al.MicroRNAs:the novel mediators for nutrient-modulating biological functions[J].Trends in Food Science & Technology,2021,114:167-175.
    [51] PIOTROWSKA-NICZYPORUK A,BAJGUZ A,ZAMBRZYCKA E,et al.Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae)[J].Plant Physiology and Biochemistry,2012,52:52-65. doi: 10.1016/j.plaphy.2011.11.009
    [52] PIOTROWSKA-NICZYPORUK A,BAJGUZ A,ZAMBRZYCKA-SZELEWA E,et al.Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus[J].Plant Physiology & Biochemistry,2018,132:535-546.
    [53] WETZEL W C,WHITEHEAD S R.The many dimensions of phytochemical diversity:linking theory to practice[J].Ecology Letters,2020,23(1):16-32. doi: 10.1111/ele.13422
    [54] LEE H,KIM J H,PARK H J,et al.Toxic effects of dietary copper and EGCG on bioaccumulation,antioxidant enzyme and immune response of Korean bullhead,Pseudobagrus fulvidraco[J].Fish & Shellfish Immunology,2021,111:119-126.
    [55] KUIPER HC,BRUNO R S,TRABER M G,et al.Vitamin C supplementation lowers urinary levels of 4-hydroperoxy-2-nonenal metabolites in humans[J].Free Radical Biology & Medicine,2011,50(7):848-853.
    [56] 许丙军.外源抗坏血酸对高等水生植物重金属毒害的缓解效应[D].南京:南京师范大学,2007.
    [57] FARSANI H G,DORIA H B,JAMALI H,et al.The protective role of vitamin E on Oreochromis niloticus exposed to ZnONP[J].Ecotoxicology and Environmental Safety,2017,145:1-7. doi: 10.1016/j.ecoenv.2017.07.005
    [58] MEKKAWY I,MAHMOUD U M,WASSIF E T,et al.Effects of cadmium on some haematological and biochemical characteristics of Oreochromis niloticus (Linnaeus,1758) dietary supplemented with tomato paste and vitamin E[J].Fish Physiology & Biochemistry,2011,37(1):71-84.
    [59] HARABAWY A S A,MOSLEH Y Y I.The role of vitamins A,C,E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium,copper,lead and zinc on erythrocytes of Nile tilapia,Oreochromis niloticus[J].Ecotoxicology and environmental safety,2014,104:28-35. doi: 10.1016/j.ecoenv.2014.02.015
    [60] KLIMEK-SZCZYKUTOWICZ M,SZOPA A,BLICHARSKA E,et al.Bioaccumulation of selected macro- and microelements and their impact on antioxidant properties and accumulation of glucosinolates and phenolic acids in in vitro cultures of Nasturtium officinale (watercress) microshoots[J].Food Chemistry,2019,300:125184. doi: 10.1016/j.foodchem.2019.125184
    [61] KUMAR N,SINGH N P.Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovar sobria in fish reared under multiple stressors[J].Fish & Shellfish Immunology,2019,84:38-47.
    [62] SAFFARI S,KEYVANSHOKOOH S,ZAKERI M,et al.Effects of different dietary selenium sources (sodium selenite,selenomethionine and nanoselenium) on growth performance,muscle composition,blood enzymes and antioxidant status of common carp (Cyprinus carpio)[J].Aquaculture Nutrition,2017,23(3):611-617. doi: 10.1111/anu.12428
    [63] 陈苏雅.Cu2+胁迫下单一及复合稀土元素对水生植物的缓解效应研究[D].南京:南京师范大学,2006.
    [64] 张小兰.稀土元素对高等水生植物重金属毒害的缓解效应[D].南京:南京师范大学,2003.
    [65] SHARIBI R,POUR F,VAHEDASL A,et al.Effects of probiotic Bactocell on growth and survival parameters of benni fish (Mesopotamichthys sharpeyi) fingerlings[J].Aquac Aquar Conserv Legis Bioflux,2015,8(5):805-809.
    [66] GOMES M P,SOARES A M,GARCIA Q S.Phosphorous and sulfur nutrition modulate antioxidant defenses in Myracrodruom urundeuva plants exposed to arsenic[J].Journal of Hazardous Materials,2014,276:97-104. doi: 10.1016/j.jhazmat.2014.05.020
    [67] ZHAO H L,YE L,WANG Y P,et al.Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle[J].Frontiers in Plant Science,2016,7:1-12.
    [68] PIOTROWSKA-NICZYPORUK A,BAJGUZ A,ZAMBRZYCKA-SZELEWA E.Response and the detoxification strategies of green alga Acutodesmus obliquus (Chlorophyceae) under lead stress[J].Environmental and Experimental Botany,2017,144:25-36. doi: 10.1016/j.envexpbot.2017.08.013
    [69] JANIK E,MAKSYMIEC W,GRUSZECKI W I.The photoprotective mechanisms in Secale cereale leaves under Cu and high light stress condition[J].Journal of Photochemistry and Photobiology B:Biology,2010,101(1):47-52. doi: 10.1016/j.jphotobiol.2010.06.010
    [70] 庄洁,杜蒙蒙,王小冬,等.癸二烯醛对3种常见浮游植物光合色素的影响[J].海洋环境科学,2016,35(4):489-494. doi: 10.13634/j.cnki.mes.2016.04.002

    ZHUANG J,DU M M,WANG X D,et al.Effects of 2E,4E-decadienal on the photosynthetic pigments of three species of phytoplankton[J].Marine Environmental Science,2016,35(4):489-494. doi: 10.13634/j.cnki.mes.2016.04.002
    [71] LUSHCHAK V I.Environmentally induced oxidative stress in aquatic animals[J].Aquatic toxicology,2011,101 1:13-30.
    [72] ZHANG M Z,LI M,WANG R X,et al.Effects of acute ammonia toxicity on oxidative stress,immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine[J].Fish & Shellfish Immunology,2018,79:313-320.
    [73] KIM J J,KIM Y S,KUMAR V.Heavy metal toxicity:an update of chelating therapeutic strategies[J].Journal of Trace Elements in Medicine and Biology,2019,54:226-231. doi: 10.1016/j.jtemb.2019.05.003
    [74] AMAGLO N K,BENNETT R N,LO CURTO R B,et al.Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L.,grown in Ghana[J].Food Chemistry,2010,122(4):1047-1054. doi: 10.1016/j.foodchem.2010.03.073
    [75] REDDY D H K,RAMANA D K V,SESHAIAH K,et al.Biosorption of Ni(Ⅱ) from aqueous phase by Moringa oleifera bark,a low cost biosorbent[J].Desalination,2011,268(1):150-157.
    [76] BEVERIDGE T J,MURRAY R G.Sites of metal deposition in the cell wall of Bacillus subtilis[J].Journal of Bacteriology,1980,141(2):876-887. doi: 10.1128/jb.141.2.876-887.1980
    [77] ZHU J M,YU L L,SHEN X D,et al.Protective effects of lactobacillus plantarum CCFM8610 against acute toxicity caused by different food-derived forms of cadmium in mice[J].International Journal of Molecular Sciences,2021,22(20):11045. doi: 10.3390/ijms222011045
    [78] XING S C,CHEN J Y,LV N,et al.Biosorption of lead (Pb2+) by the vegetative and decay cells and spores of Bacillus coagulans R11 isolated from lead mine soil[J].Chemosphere,2018,211:804-816. doi: 10.1016/j.chemosphere.2018.08.005
    [79] WHANGER P D,RIDLINGTON J W,HOLCOMB C L.Interactions of zinc and selenium on the binding of cadmium to rat tissue proteins[J].Annals of the New York Academy of Sciences,1980,355(1):333-346.
    [80] KOPPEL N,MAINI REKDAL V,BALSKUS E P.Chemical transformation of xenobiotics by the human gut microbiota[J].Science (New York,NY),2017,356(6344):1246-1257.
    [81] 刘月月,王琛,赵晓丽,等.肠道菌群的环境毒理学研究:现状与展望[J].环境科学研究,2021,34(8):1991-2000. doi: 10.13198/j.issn.1001-6929.2021.05.08

    LIU Y Y,WANG C,ZHAO X L,et al.Environmental toxicology of gut microbiota:status and perspective[J].Research of Environmental Sciences,2021,34(8):1991-2000. doi: 10.13198/j.issn.1001-6929.2021.05.08
    [82] TSUCHIYA C,SAKATA T,SUGITA H.Novel ecological niche of Cetobacterium somerae,an anaerobic bacterium in the intestinal tracts of freshwater fish[J].Letters in Applied Microbiology,2008,46(1):43-48.
    [83] NEMATOLLAHI A,DECOSTERE A,PASMANS F,et al.Flavobacterium psychrophilum infections in salmonid fish[J].Journal of Fish Diseases,2003,26(10):563-574. doi: 10.1046/j.1365-2761.2003.00488.x
    [84] RIDHA M T,ISMAIL S A.Effect of autochthonous and commercial probiotic bacteria on growth,persistence,immunity and disease resistance in juvenile and adult Nile tilapia Oreochromis niloticus[J].Aquaculture Research,2016,47(9):2757-2767. doi: 10.1111/are.12726
    [85] CHEN K,ZHOU X Q,JIANG W D,et al.Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency:regulation of TOR,NF-κB,MLCK,JNK and Nrf2 signalling in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila[J].Fish & Shellfish Immunology,2018,74:175-189.
    [86] JI J J,GU Z T,LI H,et al.Cryptdin-2 predicts intestinal injury during heatstroke in mice[J].International Journal of Molecular Medicine,2018,41(1):137-146.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  50
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2023-02-13

目录

    /

    返回文章
    返回