留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于移动观测的城市机动车氨排放特征研究

杨荟楠 马东翔 丁祥 刘文洋 楼晟荣 黄成

杨荟楠, 马东翔, 丁祥, 刘文洋, 楼晟荣, 黄成. 基于移动观测的城市机动车氨排放特征研究[J]. 环境科学研究, 2023, 36(7): 1274-1283. doi: 10.13198/j.issn.1001-6929.2023.05.01
引用本文: 杨荟楠, 马东翔, 丁祥, 刘文洋, 楼晟荣, 黄成. 基于移动观测的城市机动车氨排放特征研究[J]. 环境科学研究, 2023, 36(7): 1274-1283. doi: 10.13198/j.issn.1001-6929.2023.05.01
YANG Huinan, MA Dongxiang, DING Xiang, LIU Wenyang, LOU Shengrong, HUANG Cheng. Characterization of Ammonia Emissions from Urban Motor Vehicles Using Mobile Measurements[J]. Research of Environmental Sciences, 2023, 36(7): 1274-1283. doi: 10.13198/j.issn.1001-6929.2023.05.01
Citation: YANG Huinan, MA Dongxiang, DING Xiang, LIU Wenyang, LOU Shengrong, HUANG Cheng. Characterization of Ammonia Emissions from Urban Motor Vehicles Using Mobile Measurements[J]. Research of Environmental Sciences, 2023, 36(7): 1274-1283. doi: 10.13198/j.issn.1001-6929.2023.05.01

基于移动观测的城市机动车氨排放特征研究

doi: 10.13198/j.issn.1001-6929.2023.05.01
基金项目: 国家重点研发计划项目(No.2022YFC3703600);上海市科学技术委员会项目(No.20DZ1204002);国家自然科学青年基金项目(No.42205125)
详细信息
    作者简介:

    杨荟楠(1983-),女,上海人,教授,博士,主要从事气液两相多参数同步测量方法研究及应用研究,yanghuinan@usst.edu.cn

    通讯作者:

    黄成(1980-),男,上海人,高级工程师,博士,主要从事大气污染及防控技术研究,huangc@saes.sh.cn

  • 中图分类号: X5

Characterization of Ammonia Emissions from Urban Motor Vehicles Using Mobile Measurements

Funds: National Key Research and Development Program of China (No.2022YFC3703600); Shanghai Science and Technology Commission, China (No.20DZ1204002); National Natural Science Foundation of China (No.42205125)
  • 摘要: 氨(NH3)在城市细颗粒物(PM2.5)的形成中起重要作用,机动车是其重要来源之一. 本文利用移动式走航测量方法,在上海市开展了为期8 d的实际道路NH3排放移动走航观测,获得了道路机动车NH3排放及分布特征. 结果表明:①去除污染物背景数据后,实际道路机动车的ΔNH3/ΔCO2(NH3与CO2排放量之比,下同)为0.44×10−3,不同类型交通区存在显著差异,港区道路与中心城区道路机动车的ΔNH3/ΔCO2均较高,而高速公路相对较低. ②交通条件对实际道路机动车的NH3排放量具有重要影响,道路拥堵状态下机动车低速行进时的ΔNH3/ΔCO2是道路通畅时高速行进状态下的2~3倍. ③第四届中国国际进口博览会(2021年11月5—10日)期间,在重点拥堵路段实施的交通管制措施对削减机动车NH3排放具有积极作用. 研究显示,交通条件是城市机动车NH3排放的重要影响因素之一.

     

  • 图  1  移动走航观测平台示意

    Figure  1.  Schematic diagram of the mobile observation platform

    图  2  上海市移动走航观测路线示意

    注:A框内为区域A,B框内为区域B,红色虚线框内为中环区域. 下同.

    Figure  2.  Route map of mobile measurements in Shanghai

    图  3  上海市NH3体积分数空间分布以及各区域与超级站点NH3体积分数的对比

    Figure  3.  Distribution of NH3 volumetric fraction values in Shanghai and comparison of NH3 volumetric fraction values by region and super site

    图  4  上海市移动走航观测的NH3体积分数小时分布以及对应的风速风向情况

    Figure  4.  Hourly distribution of NH3 volume fraction and wind speed and direction during mobile walk-around observations in Shanghai

    图  5  上海市机动车移动走航观测的ΔNH3/ΔCO2空间分布及其频率分布情况

    注:图b中灰色和深绿色实线分别表示移动走航观测的ΔNH3/ΔCO2中值和平均值,蓝色、橙色及红色虚线分别表示区域A、中环区域及区域B的ΔNH3/ΔCO2平均值.

    Figure  5.  Spatial distribution of ΔNH3/ΔCO2 emission ratio and frequency distribution of ΔNH3/ΔCO2 data values for motor vehicles in Shanghai

    图  6  上海市不同区域ΔNH3/ΔCO2与车速的关系

    Figure  6.  Relationship between ΔNH3/ΔCO2 and vehicle speed in different regions of Shanghai

    图  7  第四届中国国际进口博览会管控期间与非会议管控期间各区域ΔNH3/ΔCO2的差异

    注:会议(第四届中国国际进口博览会)管控期间包括11月4日、8日;非会议管控期间包括1月28—29日、10月27日、11月9—10日及11月20日.

    Figure  7.  Comparison of ΔNH3/ΔCO2 emission ratio during the control period of CIIE and non-conference control period

    表  1  仪器型号及参数

    Table  1.   Instrument model and parameters

    待分析物质仪器型号(公司,国家)测量组分测量范围检测下限响应时间/s
    NH3Picarro G2103(Santa Clara,美国)NH3、H2O0~500×10−90.09×10−91
    CO2Picarro G2401(Santa Clara,美国)CO2、CO、CH4、H2O0~1000×10−650×10−61
    NOxECO physics CLD-800(ECO physics,瑞士)NO、NO2、NOx0~10000×10−91×10−95
    下载: 导出CSV

    表  2  移动走航观测时段及道路条件

    Table  2.   Durations and road conditions of each mobile measurement in this study

    路线走航日期走航时段区域里程/km平均车速/(km/h)温度/℃相对湿度/%风速/(m/s)风向/(°)
    路线1 2021-01-28 16:27—19:02 区域A、中环区域 76.1 29.5 10.1 48.2 4.7 149
    路线2 2021-01-29 13:23—19:16 区域A、中环区域 193.8 32.9 7.1 32.5 3.1 173
    路线3 2021-10-27 10:45—17:52 中环区域 156.8 21.6 21.2 50.3 1.9 83
    路线4 2021-11-04 13:00—18:07 中环区域 52.2 20.2 19.7 70.4 2.9 113
    路线5 2021-11-08 11:41—23:59 区域B、中环区域 93.1 18.2 7.8 43.5 4.1 292
    路线6 2021-11-09 10:05—18:00 区域B、中环区域 120.7 19.2 12.0 34.6 4.1 263
    路线7 2021-11-10 10:00—16:37 中环区域 109.8 23.1 15.2 32.7 5.6 280
    路线8 2021-11-20 12:00—23:59 区域A、中环区域 88.6 17.0 18.2 62.4 2.6 100
    下载: 导出CSV

    表  3  该研究与已有研究中所测ΔNH3/ΔCO2的对比

    Table  3.   Values of ΔNH3/ΔCO2 from previous studies

    年份测量方法测量手段(ΔNH3/ΔCO2)/10−3数据来源
    2006遥感道路测量0.42±0.01文献[28]
    2010遥感坡道测量0.41±0.02文献[29]
    道路测量0.49±0.02
    2017TDL (tunable diode laser)道路测量0.40±0.06文献[30]
    2015遥感坡道测量0.37±0.02文献[31]
    2006TDL道路测量0.12±0.07文献[32]
    2001遥感隧道测量0.35±0.03文献[33]
    2009IC (ion chromatography)隧道测量0.40±0.02文献[34]
    2013化学荧光隧道测量3.40±0.20文献[35]
    2016吸收硫酸隧道测量0.42±0.07文献[36]
    2014FTIR (fourier transform infrared)底盘测功机0.31±0.33文献[24]
    2018TDL底盘测功机0.41±0.34文献[22]
    2021CRDS (cavity ring-down spectroscopy)道路测量(区域A)0.62±2.40该研究
    道路测量(中环区域)0.31±0.61
    道路测量(区域B)0.06±0.06
    道路测量(平均值)0.44±0.34
    道路测量(中值)0.18±0.40
    下载: 导出CSV
  • [1] PINDER R W,GILLILAND A B,DENNIS R L.Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States[J].Geophysical Research Letters,2008,35(12):L12808-1-L12808-6.
    [2] BOUWMAN A F,LEE D S,ASMAN W A H,et al.A global high-resolution emission inventory for ammonia[J].Global Biogeochemical Cycles,1997,11(4):561-587. doi: 10.1029/97GB02266
    [3] ZHENG G J,SU H,WANG S W,et al.Multiphase buffer theory explains contrasts in atmospheric aerosol acidity[J].Science,2020,369(6509):1374-1377. doi: 10.1126/science.aba3719
    [4] 吕文丽,张凯,支敏康,等.冬季NH3和液态水含量对PM2.5中SNA形成的影响与敏感性分析[J].环境科学研究,2021,34(5):1053-1062.

    LV W L,ZHANG K,ZHI M K,et al.Influences of NH3 and AWC on the formation of SNA in PM2.5 in winter and sensitivity analysis[J].Research of Environmental Sciences,2021,34(5):1053-1062.
    [5] ZHAI S X,JACOB D J,WANG X,et al.Control of particulate nitrate air pollution in China[J].Nature Geoscience,2021,14(6):389-395. doi: 10.1038/s41561-021-00726-z
    [6] WANG R Y,YE X N,LIU Y X,et al.Characteristics of atmospheric ammonia and its relationship with vehicle emissions in a megacity in China[J].Atmospheric Environment,2018,182:97-104. doi: 10.1016/j.atmosenv.2018.03.047
    [7] WANG G H,ZHANG R Y,GOMEZ M E,et al.Persistent sulfate formation from London Fog to Chinese haze[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(48):13630-13635. doi: 10.1073/pnas.1616540113
    [8] 任立军,赵文琪,安婷婷,等.不同施肥方式对设施土壤氨挥发特征的影响[J].环境科学研究,2021,34(11):2731-2739. doi: 10.13198/j.issn.1001-6929.2021.08.07

    REN L J,ZHAO W Q,AN T T,et al.Effects of different fertilization treatments on soil ammonia emission in greenhouse[J].Research of Environmental Sciences,2021,34(11):2731-2739. doi: 10.13198/j.issn.1001-6929.2021.08.07
    [9] PAULOT F,JACOB D J,PINDER R W,et al.Ammonia emissions in the United States,European Union,and China derived by high-resolution inversion of ammonium wet deposition data:interpretation with a new agricultural emissions inventory (MASAGE_NH3)[J].Journal of Geophysical Research:Atmospheres,2014,119(7):4343-4364. doi: 10.1002/2013JD021130
    [10] ZHANG Y Y,BENEDICT K B,TANG A H,et al.Persistent nonagricultural and periodic agricultural emissions dominate sources of ammonia in urban Beijing:evidence from 15N stable isotope in vertical profiles[J].Environmental Science & Technology,2020,54(1):102-109.
    [11] ZHANG L,CHEN Y F,ZHAO Y H,et al.Agricultural ammonia emissions in China:reconciling bottom-up and top-down estimates[J].Atmospheric Chemistry and Physics,2018,18(1):339-355. doi: 10.5194/acp-18-339-2018
    [12] CHANG Y H.Non-agricultural ammonia emissions in urban China[J].Atmospheric Chemistry and Physics,2014,14:8495-8531.
    [13] SHAO S C,ZHANG Y L,CHANG Y H,et al.Online characterization of a large but overlooked human excreta source of ammonia in China's urban atmosphere[J].Atmospheric Environment,2020,230:117459. doi: 10.1016/j.atmosenv.2020.117459
    [14] LIVINGSTON C,RIEGER P,WINER A.Ammonia emissions from a representative in-use fleet of light and medium-duty vehicles in the California South Coast Air Basin[J].Atmospheric Environment,2009,43(21):3326-3333. doi: 10.1016/j.atmosenv.2009.04.009
    [15] MENG Z Y,LIN W L,JIANG X M,et al.Characteristics of atmospheric ammonia over Beijing,China[J].Atmospheric Chemistry and Physics,2011,11(12):6139-6151. doi: 10.5194/acp-11-6139-2011
    [16] LI Y Q,SCHWAB J J,DEMERJIAN K L.Measurements of ambient ammonia using a tunable diode laser absorption spectrometer:characteristics of ambient ammonia emissions in an urban area of New York City[J].Journal of Geophysical Research:Atmospheres,2006,111(D10):0148-0227.
    [17] HEEB N V,SAXER C J,FORSS A M,et al.Trends of NO-,NO2-,and NH3-emissions from gasoline-fueled Euro-3- to Euro-4-passenger cars[J].Atmospheric Environment,2008,42(10):2543-2554. doi: 10.1016/j.atmosenv.2007.12.008
    [18] DURBIN T D,WILSON R D,NORBECK J M,et al.Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles[J].Atmospheric Environment,2002,36(9):1475-1482. doi: 10.1016/S1352-2310(01)00583-0
    [19] 吉江林,赵海光,郑丰,等.法规工况下轻型汽油车氨排放特征[J].环境科学研究,2022,35(5):1176-1182.

    JI J L,ZHAO H G,ZHENG F,et al.Ammonia emission characteristics for the light-duty gasoline vehicle under regulatory cycles[J].Research of Environmental Sciences,2022,35(5):1176-1182.
    [20] SUAREZ-BERTOA R,ZARDINI A A,ASTORGA C.Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle[J].Atmospheric Environment,2014,97:43-53. doi: 10.1016/j.atmosenv.2014.07.050
    [21] 韩亚欣,谭建伟,杨佳,等.WLTC循环下汽油车氨排放影响因素分析[J].环境科学研究,2019,32(4):654-661. doi: 10.13198/j.issn.1001-6929.2018.09.17

    HAN Y X,TAN J W,YANG J,et al.Analysis of factors affecting ammonia emission from gasoline vehicles under WLTC cycle[J].Research of Environmental Sciences,2019,32(4):654-661. doi: 10.13198/j.issn.1001-6929.2018.09.17
    [22] HUANG C,HU Q Y,LOU S R,et al.Ammonia emission measurements for light-duty gasoline vehicles in China and implications for emission modeling[J].Environmental Science & Technology,2018,52(19):11223-11231.
    [23] 汤明珍,任建宁,伍丽青,等.移动式空气质量传感器的研究与应用进展[J].环境科学研究,2022,35(4):971-978.

    TANG M Z,REN J N,WU L Q,et al.Advances in research and application of mobile air quality sensors[J].Research of Environmental Sciences,2022,35(4):971-978.
    [24] SUN K,TAO L,MILLER D J,et al.Vehicle emissions as an important urban ammonia source in the United States and China[J].Environmental Science & Technology,2017,51(4):2472-2481.
    [25] LI Y R,TAN Z Q,YE C X,et al.Using wavelet transform to analyse on-road mobile measurements of air pollutants:a case study to evaluate vehicle emission control policies during the 2014 APEC summit[J].Atmospheric Chemistry and Physics,2019,19(22):13841-13857. doi: 10.5194/acp-19-13841-2019
    [26] LIU Y L,NIE W,XU Z,et al.Semi-quantitative understanding of source contribution to nitrous acid (HONO) based on 1 year of continuous observation at the SORPES station in eastern China[J].Atmospheric Chemistry and Physics,2019,19(20):13289-13308. doi: 10.5194/acp-19-13289-2019
    [27] DING A J,NIE W,HUANG X,et al.Long-term observation of air pollution-weather/climate interactions at the SORPES station:a review and outlook[J].Frontiers of Environmental Science & Engineering,2016,10(5):15.
    [28] BURGARD D A,BISHOP G A,STEDMAN D H.Remote sensing of ammonia and sulfur dioxide from on-road light duty vehicles[J].Environmental Science & Technology,2006,40(22):7018-7022.
    [29] BISHOP G A,SCHUCHMANN B G,STEDMAN D H,et al.Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Nuys,California[J].Journal of the Air & Waste Management Association (1995),2012,62(10):1127-1133.
    [30] SUN K,TAO L,MILLER D J,et al.On-road ammonia emissions characterized by mobile,open-path measurements[J].Environmental Science & Technology,2014,48(7):3943-3950.
    [31] ZAVALA M,HERNDON S C,SLOTT R S,et al.Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign[J].Atmospheric Chemistry and Physics,2006,6(12):5129-5142. doi: 10.5194/acp-6-5129-2006
    [32] BISHOP G A,PEDDLE A M,STEDMAN D H,et al.On-road emission measurements of reactive nitrogen compounds from three California cities[J].Environmental Science & Technology,2010,44(9):3616-3620.
    [33] BAUM M M,KIYOMIYA E S,KUMAR S,et al.Multicomponent remote sensing of vehicle exhaust by dispersive absorption spectroscopy.2.direct on-road ammonia measurements[J].Environmental Science & Technology,2001,35(18):3735-3741.
    [34] KEAN A J,LITTLEJOHN D,BAN-WEISS G A,et al.Trends in on-road vehicle emissions of ammonia[J].Atmospheric Environment,2009,43(8):1565-1570. doi: 10.1016/j.atmosenv.2008.09.085
    [35] LIU T Y,WANG X M,WANG B G,et al.Emission factor of ammonia (NH3) from on-road vehicles in China:tunnel tests in urban Guangzhou[J].Environmental Research Letters,2014,9(6):064027.
    [36] CHANG Y H,ZOU Z,DENG C R,et al.The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai[J].Atmospheric Chemistry and Physics,2016,16(5):3577-3594.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  49
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-30
  • 修回日期:  2023-04-30

目录

    /

    返回文章
    返回