Characterization of Ammonia Emissions from Urban Motor Vehicles Using Mobile Measurements
-
摘要: 氨(NH3)在城市细颗粒物(PM2.5)的形成中起重要作用,机动车是其重要来源之一. 本文利用移动式走航测量方法,在上海市开展了为期8 d的实际道路NH3排放移动走航观测,获得了道路机动车NH3排放及分布特征. 结果表明:①去除污染物背景数据后,实际道路机动车的ΔNH3/ΔCO2(NH3与CO2排放量之比,下同)为0.44×10−3,不同类型交通区存在显著差异,港区道路与中心城区道路机动车的ΔNH3/ΔCO2均较高,而高速公路相对较低. ②交通条件对实际道路机动车的NH3排放量具有重要影响,道路拥堵状态下机动车低速行进时的ΔNH3/ΔCO2是道路通畅时高速行进状态下的2~3倍. ③第四届中国国际进口博览会(2021年11月5—10日)期间,在重点拥堵路段实施的交通管制措施对削减机动车NH3排放具有积极作用. 研究显示,交通条件是城市机动车NH3排放的重要影响因素之一.Abstract: Ammonia (NH3) plays an important role in the formation of urban fine particulate matter (PM2.5), and motor vehicles are one of the important sources of NH3. In this study, an 8 d mobile observation of actual road NH3 emissions was conducted in Shanghai using mobile walk-around measurements to obtain NH3 emissions and distribution characteristics of motor vehicles. The results show that: (1) The ΔNH3/ΔCO2 (ratio of NH3 to CO2 emissions) for actual road motor vehicles (with air background concentrations removed) was 0.44×10−3, with significant differences between traffic types, with higher ΔNH3/ΔCO2 for motor vehicles on port roads and central city roads, and lower for motorways. (2) Traffic conditions have a significant impact on actual road NH3 emissions, with ΔNH3/ΔCO2 being two to three times higher at low speeds than at high speeds when the road is congested. (3) During the 4th China International Import Expo (CIIE, November 5th-10th, 2021), traffic control measures implemented on key congested road sections had a positive effect on reducing NH3 emissions from motor vehicles. This study shows that traffic conditions are one of the important influencing factors of NH3 emissions from urban motor vehicles.
-
Key words:
- motor vehicles /
- mobile observation /
- emission characteristics
-
表 1 仪器型号及参数
Table 1. Instrument model and parameters
待分析物质 仪器型号(公司,国家) 测量组分 测量范围 检测下限 响应时间/s NH3 Picarro G2103(Santa Clara,美国) NH3、H2O 0~500×10−9 0.09×10−9 1 CO2 Picarro G2401(Santa Clara,美国) CO2、CO、CH4、H2O 0~1000×10−6 50×10−6 1 NOx ECO physics CLD-800(ECO physics,瑞士) NO、NO2、NOx 0~10000×10−9 1×10−9 5 表 2 移动走航观测时段及道路条件
Table 2. Durations and road conditions of each mobile measurement in this study
路线 走航日期 走航时段 区域 里程/km 平均车速/(km/h) 温度/℃ 相对湿度/% 风速/(m/s) 风向/(°) 路线1 2021-01-28 16:27—19:02 区域A、中环区域 76.1 29.5 10.1 48.2 4.7 149 路线2 2021-01-29 13:23—19:16 区域A、中环区域 193.8 32.9 7.1 32.5 3.1 173 路线3 2021-10-27 10:45—17:52 中环区域 156.8 21.6 21.2 50.3 1.9 83 路线4 2021-11-04 13:00—18:07 中环区域 52.2 20.2 19.7 70.4 2.9 113 路线5 2021-11-08 11:41—23:59 区域B、中环区域 93.1 18.2 7.8 43.5 4.1 292 路线6 2021-11-09 10:05—18:00 区域B、中环区域 120.7 19.2 12.0 34.6 4.1 263 路线7 2021-11-10 10:00—16:37 中环区域 109.8 23.1 15.2 32.7 5.6 280 路线8 2021-11-20 12:00—23:59 区域A、中环区域 88.6 17.0 18.2 62.4 2.6 100 表 3 该研究与已有研究中所测ΔNH3/ΔCO2的对比
Table 3. Values of ΔNH3/ΔCO2 from previous studies
年份 测量方法 测量手段 (ΔNH3/ΔCO2)/10−3 数据来源 2006 遥感 道路测量 0.42±0.01 文献[28] 2010 遥感 坡道测量 0.41±0.02 文献[29] 道路测量 0.49±0.02 2017 TDL (tunable diode laser) 道路测量 0.40±0.06 文献[30] 2015 遥感 坡道测量 0.37±0.02 文献[31] 2006 TDL 道路测量 0.12±0.07 文献[32] 2001 遥感 隧道测量 0.35±0.03 文献[33] 2009 IC (ion chromatography) 隧道测量 0.40±0.02 文献[34] 2013 化学荧光 隧道测量 3.40±0.20 文献[35] 2016 吸收硫酸 隧道测量 0.42±0.07 文献[36] 2014 FTIR (fourier transform infrared) 底盘测功机 0.31±0.33 文献[24] 2018 TDL 底盘测功机 0.41±0.34 文献[22] 2021 CRDS (cavity ring-down spectroscopy) 道路测量(区域A) 0.62±2.40 该研究 道路测量(中环区域) 0.31±0.61 道路测量(区域B) 0.06±0.06 道路测量(平均值) 0.44±0.34 道路测量(中值) 0.18±0.40 -
[1] PINDER R W,GILLILAND A B,DENNIS R L.Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States[J].Geophysical Research Letters,2008,35(12):L12808-1-L12808-6. [2] BOUWMAN A F,LEE D S,ASMAN W A H,et al.A global high-resolution emission inventory for ammonia[J].Global Biogeochemical Cycles,1997,11(4):561-587. doi: 10.1029/97GB02266 [3] ZHENG G J,SU H,WANG S W,et al.Multiphase buffer theory explains contrasts in atmospheric aerosol acidity[J].Science,2020,369(6509):1374-1377. doi: 10.1126/science.aba3719 [4] 吕文丽,张凯,支敏康,等.冬季NH3和液态水含量对PM2.5中SNA形成的影响与敏感性分析[J].环境科学研究,2021,34(5):1053-1062.LV W L,ZHANG K,ZHI M K,et al.Influences of NH3 and AWC on the formation of SNA in PM2.5 in winter and sensitivity analysis[J].Research of Environmental Sciences,2021,34(5):1053-1062. [5] ZHAI S X,JACOB D J,WANG X,et al.Control of particulate nitrate air pollution in China[J].Nature Geoscience,2021,14(6):389-395. doi: 10.1038/s41561-021-00726-z [6] WANG R Y,YE X N,LIU Y X,et al.Characteristics of atmospheric ammonia and its relationship with vehicle emissions in a megacity in China[J].Atmospheric Environment,2018,182:97-104. doi: 10.1016/j.atmosenv.2018.03.047 [7] WANG G H,ZHANG R Y,GOMEZ M E,et al.Persistent sulfate formation from London Fog to Chinese haze[J].Proceedings of the National Academy of Sciences of the United States of America,2016,113(48):13630-13635. doi: 10.1073/pnas.1616540113 [8] 任立军,赵文琪,安婷婷,等.不同施肥方式对设施土壤氨挥发特征的影响[J].环境科学研究,2021,34(11):2731-2739. doi: 10.13198/j.issn.1001-6929.2021.08.07REN L J,ZHAO W Q,AN T T,et al.Effects of different fertilization treatments on soil ammonia emission in greenhouse[J].Research of Environmental Sciences,2021,34(11):2731-2739. doi: 10.13198/j.issn.1001-6929.2021.08.07 [9] PAULOT F,JACOB D J,PINDER R W,et al.Ammonia emissions in the United States,European Union,and China derived by high-resolution inversion of ammonium wet deposition data:interpretation with a new agricultural emissions inventory (MASAGE_NH3)[J].Journal of Geophysical Research:Atmospheres,2014,119(7):4343-4364. doi: 10.1002/2013JD021130 [10] ZHANG Y Y,BENEDICT K B,TANG A H,et al.Persistent nonagricultural and periodic agricultural emissions dominate sources of ammonia in urban Beijing:evidence from 15N stable isotope in vertical profiles[J].Environmental Science & Technology,2020,54(1):102-109. [11] ZHANG L,CHEN Y F,ZHAO Y H,et al.Agricultural ammonia emissions in China:reconciling bottom-up and top-down estimates[J].Atmospheric Chemistry and Physics,2018,18(1):339-355. doi: 10.5194/acp-18-339-2018 [12] CHANG Y H.Non-agricultural ammonia emissions in urban China[J].Atmospheric Chemistry and Physics,2014,14:8495-8531. [13] SHAO S C,ZHANG Y L,CHANG Y H,et al.Online characterization of a large but overlooked human excreta source of ammonia in China's urban atmosphere[J].Atmospheric Environment,2020,230:117459. doi: 10.1016/j.atmosenv.2020.117459 [14] LIVINGSTON C,RIEGER P,WINER A.Ammonia emissions from a representative in-use fleet of light and medium-duty vehicles in the California South Coast Air Basin[J].Atmospheric Environment,2009,43(21):3326-3333. doi: 10.1016/j.atmosenv.2009.04.009 [15] MENG Z Y,LIN W L,JIANG X M,et al.Characteristics of atmospheric ammonia over Beijing,China[J].Atmospheric Chemistry and Physics,2011,11(12):6139-6151. doi: 10.5194/acp-11-6139-2011 [16] LI Y Q,SCHWAB J J,DEMERJIAN K L.Measurements of ambient ammonia using a tunable diode laser absorption spectrometer:characteristics of ambient ammonia emissions in an urban area of New York City[J].Journal of Geophysical Research:Atmospheres,2006,111(D10):0148-0227. [17] HEEB N V,SAXER C J,FORSS A M,et al.Trends of NO-,NO2-,and NH3-emissions from gasoline-fueled Euro-3- to Euro-4-passenger cars[J].Atmospheric Environment,2008,42(10):2543-2554. doi: 10.1016/j.atmosenv.2007.12.008 [18] DURBIN T D,WILSON R D,NORBECK J M,et al.Estimates of the emission rates of ammonia from light-duty vehicles using standard chassis dynamometer test cycles[J].Atmospheric Environment,2002,36(9):1475-1482. doi: 10.1016/S1352-2310(01)00583-0 [19] 吉江林,赵海光,郑丰,等.法规工况下轻型汽油车氨排放特征[J].环境科学研究,2022,35(5):1176-1182.JI J L,ZHAO H G,ZHENG F,et al.Ammonia emission characteristics for the light-duty gasoline vehicle under regulatory cycles[J].Research of Environmental Sciences,2022,35(5):1176-1182. [20] SUAREZ-BERTOA R,ZARDINI A A,ASTORGA C.Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle[J].Atmospheric Environment,2014,97:43-53. doi: 10.1016/j.atmosenv.2014.07.050 [21] 韩亚欣,谭建伟,杨佳,等.WLTC循环下汽油车氨排放影响因素分析[J].环境科学研究,2019,32(4):654-661. doi: 10.13198/j.issn.1001-6929.2018.09.17HAN Y X,TAN J W,YANG J,et al.Analysis of factors affecting ammonia emission from gasoline vehicles under WLTC cycle[J].Research of Environmental Sciences,2019,32(4):654-661. doi: 10.13198/j.issn.1001-6929.2018.09.17 [22] HUANG C,HU Q Y,LOU S R,et al.Ammonia emission measurements for light-duty gasoline vehicles in China and implications for emission modeling[J].Environmental Science & Technology,2018,52(19):11223-11231. [23] 汤明珍,任建宁,伍丽青,等.移动式空气质量传感器的研究与应用进展[J].环境科学研究,2022,35(4):971-978.TANG M Z,REN J N,WU L Q,et al.Advances in research and application of mobile air quality sensors[J].Research of Environmental Sciences,2022,35(4):971-978. [24] SUN K,TAO L,MILLER D J,et al.Vehicle emissions as an important urban ammonia source in the United States and China[J].Environmental Science & Technology,2017,51(4):2472-2481. [25] LI Y R,TAN Z Q,YE C X,et al.Using wavelet transform to analyse on-road mobile measurements of air pollutants:a case study to evaluate vehicle emission control policies during the 2014 APEC summit[J].Atmospheric Chemistry and Physics,2019,19(22):13841-13857. doi: 10.5194/acp-19-13841-2019 [26] LIU Y L,NIE W,XU Z,et al.Semi-quantitative understanding of source contribution to nitrous acid (HONO) based on 1 year of continuous observation at the SORPES station in eastern China[J].Atmospheric Chemistry and Physics,2019,19(20):13289-13308. doi: 10.5194/acp-19-13289-2019 [27] DING A J,NIE W,HUANG X,et al.Long-term observation of air pollution-weather/climate interactions at the SORPES station:a review and outlook[J].Frontiers of Environmental Science & Engineering,2016,10(5):15. [28] BURGARD D A,BISHOP G A,STEDMAN D H.Remote sensing of ammonia and sulfur dioxide from on-road light duty vehicles[J].Environmental Science & Technology,2006,40(22):7018-7022. [29] BISHOP G A,SCHUCHMANN B G,STEDMAN D H,et al.Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Nuys,California[J].Journal of the Air & Waste Management Association (1995),2012,62(10):1127-1133. [30] SUN K,TAO L,MILLER D J,et al.On-road ammonia emissions characterized by mobile,open-path measurements[J].Environmental Science & Technology,2014,48(7):3943-3950. [31] ZAVALA M,HERNDON S C,SLOTT R S,et al.Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign[J].Atmospheric Chemistry and Physics,2006,6(12):5129-5142. doi: 10.5194/acp-6-5129-2006 [32] BISHOP G A,PEDDLE A M,STEDMAN D H,et al.On-road emission measurements of reactive nitrogen compounds from three California cities[J].Environmental Science & Technology,2010,44(9):3616-3620. [33] BAUM M M,KIYOMIYA E S,KUMAR S,et al.Multicomponent remote sensing of vehicle exhaust by dispersive absorption spectroscopy.2.direct on-road ammonia measurements[J].Environmental Science & Technology,2001,35(18):3735-3741. [34] KEAN A J,LITTLEJOHN D,BAN-WEISS G A,et al.Trends in on-road vehicle emissions of ammonia[J].Atmospheric Environment,2009,43(8):1565-1570. doi: 10.1016/j.atmosenv.2008.09.085 [35] LIU T Y,WANG X M,WANG B G,et al.Emission factor of ammonia (NH3) from on-road vehicles in China:tunnel tests in urban Guangzhou[J].Environmental Research Letters,2014,9(6):064027. [36] CHANG Y H,ZOU Z,DENG C R,et al.The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai[J].Atmospheric Chemistry and Physics,2016,16(5):3577-3594. -