Emission Characteristics of Biogenic Volatile Organic Compounds in Shandong Province
-
摘要: 山东省夏季主要大气污染物为臭氧(O3),植物源挥发性有机物(BVOCs)作为O3生成的重要前体物,其排放量的准确计算将在大气污染防治中起到重要作用. 本文对山东省9个优势树种降雨前后的BVOCs排放速率和相关气象因子进行实地监测,采用G95光温模型-遥感叶生物量校正法,结合树种蓄积量信息,计算得到山东省BVOCs排放总量. 结果表明:①山东省2021年BVOCs总排放量为256 837.21 t,排放物质以异戊二烯(25.75%)和含氧VOCs(36.61%)为主,单萜烯(18.20%)、倍半萜烯(5.83%)和其他VOCs(13.61%)相对较少. ②森林和农田是主要的BVOCs排放源,排放量占比分别为58.81%和32.07%. ③BVOCs排放量较大的4个城市分别为临沂市(11.92%)、潍坊市(9.81%)、济南市(9.53%)和烟台市(9.09%). ④针叶树种侧柏(Platycladus orientalis)、赤松(Pinus densiflora),阔叶树种白蜡(Fraxinus chinensis)、刺槐(Robinia pseudoacacia)、杨树(Populus tomentosa)、栎树(Quercus mongolica)、柳树(Salix babylonica)7个树种BVOCs排放速率在降雨后均显著降低,降幅在20.71%~93.94%之间. 研究显示,山东省夏季BVOCs排放量较高,具有明显的季节性特征;降雨可不同程度地降低植被BVOCs排放量,夏季O3污染高发期可通过人工降雨或洒水降低O3前体物浓度,削减O3生成.
-
关键词:
- 植物源挥发性有机物(BVOCs) /
- 排放量 /
- 山东省 /
- 降雨影响
Abstract: Ozone (O3) is the main air pollutant in Shandong Province in summer. As an important precursor of O3 formation, accurate calculation of biogenic volatile organic compounds (BVOCs) emissions will play an important role in the prevention and control of air pollution. In this study, the BVOCs emission rate and related meteorological factors of 9 dominant trees in Shandong Province before and after precipitation were monitored. G95 light-temperature model-remote sensing leaf biomass correction method was used in combination with tree stock information. The total amount of BVOCs emissions in Shandong Province was calculated. The results showed that: (1) The total emission of BVOCs in Shandong Province in 2021 was 256,837.21 t, the main emissions were isoprene (25.75%) and oxygen containing VOCs (36.61%). Monoterpene (18.20%), sesquiterpene (5.83%) and other VOCs (13.61%) were relatively low. (2) Forests and farmland were the main sources of BVOCs emissions, accounting for 58.81% and 32.07%, respectively. (3) The four cities with the largest BVOCs emissions were Linyi (11.92%), Weifang (9.81%), Jinan (9.53%) and Yantai (9.09%). (4) The BVOCs emission rates of coniferous species Platycladus orientalis, Pinus densiflora, broad-leaved species (Fraxinus chinensis), Robinia pseudoacacia, poplar (Populus tomentosa), oak (Quercus Linn) and willow (Salix babylonica) decreased significantly after precipitation (20.71%-93.94%). The study shows that the BVOCs emissions in summer in Shandong Province are high, with obvious seasonal characteristics. Rainfall can reduce the vegetation BVOCs emissions to varying degrees. The concentration of O3 precursors can be reduced by artificial rainfall or watering in the peak period of O3 pollution in summer. -
表 1 采样环境条件
Table 1. Environment condition during sampling period
项目 采样日期 采样时段 空气湿度/% 温度/℃ PAR/[μmol/(m2∙s)] 土壤湿度/% 降雨量/mm 侧柏 雨前 2022-07-20 10:00—11:00 34.47 35.3 185.40 39.9 — 雨后 2022-07-08 10:00—11:00 63.20 27.2 441.00 59.2 28.5 白蜡 雨前 2022-08-10 10:00—11:00 32.60 31.9 210.67 29.3 — 雨后 2022-08-22 10:00—11:00 49.60 32.2 473.30 58.4 22.8 刺槐 雨前 2022-08-10 14:00—15:00 49.60 31.9 210.67 27.3 — 雨后 2022-08-23 14:45—15:45 54.20 26.3 151.57 56.5 19.1 黑松 雨前 2022-08-11 10:00—11:00 63.67 31.2 1 136.78 60.9 — 雨后 2022-08-16 10:00—11:00 59.29 30.8 699.00 65.5 9.8 杨树 雨前 2022-08-03 11:00—12:00 15.40 33.4 1 048.56 38.9 — 雨后 2022-08-15 14:00—15:00 66.43 25.6 236.67 61.3 9.8 赤松 雨前 2022-10-22 10:00—11:00 46.30 20.3 881.00 45.3 — 雨后 2022-10-22 11:00—12:00 72.43 24.5 486.67 63.9 18.7 栎树 雨前 2022-07-15 15:09—16:09 17.37 32.1 863.89 32.7 — 雨后 2022-08-17 14:45—15:45 68.70 26.6 136.23 55.9 16.9 油松 雨前 2022-08-12 14:00—15:00 16.70 22.6 182.27 28.9 — 雨后 2022-08-18 14:00—15:00 68.45 22.1 1 491.33 58.7 16.9 柳树 雨前 2022-09-26 10:05—11:05 17.80 29.2 195.00 30.7 — 雨后 2022-10-17 10:00—11:00 59.90 19.6 207.67 60.5 15.7 表 2 山东省BVOCs排放清单
Table 2. BVOCs emission inventory of Shandong Province
植被类型 植被类型 排放量/t 异戊二烯 单萜烯 倍半萜烯 含氧VOCs 其他VOCs 合计 阔叶树种 杨树 38 458.08 4 103.71 6 337.92 23 059.24 7 543.32 79 502.26 其他软阔 10 542.32 894.54 7.03 10.72 894.54 12 349.15 刺槐 4 076.15 243.18 0.00 2 407.07 188.89 6 915.29 栎类 2 278.19 146.04 1 212.37 1 350.29 315.48 5 302.37 其他硬阔 1 990.56 118.76 0.00 1 175.48 92.24 3 377.04 山杨 2 469.09 18.47 0.47 23.67 70.84 2 582.53 柳树 735.32 139.62 22.04 152.41 425.09 1 474.48 泡桐 350.75 145.56 129.75 249.01 382.32 1 257.39 板栗 16.79 1 096.22 2.04 21.62 115.80 1 252.47 榆树 7.94 48.65 19.26 23.58 48.65 148.08 核桃 66.01 0.00 4.58 0.00 57.25 127.84 水曲柳 102.35 4.96 0.01 0.14 14.05 121.52 银杏 12.94 50.83 0.15 0.23 22.83 86.97 白蜡树 0.00 9.02 5.20 43.98 13.55 71.75 柿树 8.28 21.46 0.40 0.06 6.07 36.28 桉树 13.38 2.03 0.07 0.66 1.02 17.16 楝树 0.48 0.09 0.01 11.09 1.33 13.00 黄波罗 0.28 9.56 0.02 0.18 0.00 10.04 椴树 3.41 3.38 0.03 0.33 0.30 7.46 杜仲 3.65 0.55 0.01 0.02 0.69 4.93 枫香 3.22 0.98 0.01 0.11 0.03 4.34 胡桃楸 0.00 1.50 0.00 0.18 0.05 1.74 漆树 0.32 0.03 0.00 0.00 0.03 0.38 樟木 0.00 0.01 0.00 0.36 0.00 0.37 白桦 0.05 0.00 0.00 0.00 0.05 0.10 厚朴 0.00 0.01 0.00 0.03 0.00 0.04 栓皮栎 0.01 0.00 0.00 0.00 0.00 0.02 续表 植被类型 植被类型 排放量/t 异戊二烯 单萜烯 倍半萜烯 含氧VOCs 其他VOCs 合计 针叶树种 黑松 0.00 15 192.38 1 890.56 3 225.68 487.49 20 796.11 柏木 0.00 5 118.29 2 796.61 1 896.60 598.20 10 409.71 赤松 0.00 2 584.47 311.15 265.19 38.18 3 198.98 油松 0.00 1 405.07 57.27 134.50 16.54 1 613.38 其他松类 92.81 73.93 12.46 1.71 73.93 254.85 樟子松 0.81 6.80 1.35 8.51 27.36 44.82 其他杉类 7.84 27.44 0.51 3.20 0.39 39.38 水杉 0.48 5.83 2.69 1.61 4.03 14.63 火炬松 0.04 0.68 0.44 1.99 3.41 6.57 华山松 0.04 3.15 0.20 0.31 1.53 5.24 乔松 0.00 0.42 0.15 0.07 0.05 0.68 高山松 0.00 0.18 0.00 0.00 0.01 0.19 落叶松 0.00 0.00 0.00 0.00 0.00 0.01 农田 玉米 401.12 6 539.92 965.13 23 842.94 7 468.83 39 217.93 小麦 272.38 4 796.68 707.87 17 487.52 5 477.99 28 742.45 花生 66.42 1 066.23 157.35 3 887.23 1 217.68 6 394.91 豆类 25.91 414.93 61.23 1 512.73 473.86 2 488.67 棉花 20.10 342.18 50.50 1 247.51 390.78 2 051.07 薯类 17.69 290.90 42.93 1 060.55 332.22 1 744.29 谷类 18.01 282.04 41.62 1 028.24 322.10 1 692.00 油菜 0.50 7.73 1.14 28.19 8.83 46.39 灌木 3 866.11 1 508.92 130.37 8 802.40 6 811.26 21 119.06 草地 213.35 7.99 2.88 1 071.14 995.52 2 290.87 合计 66 143.18 46 735.35 14 975.78 94 038.28 34 944.61 256 837.21 表 3 山东省各地级市2021年BVOCs排放量
Table 3. BVOCs emissions from prefecture-level cities in Shandong Province in 2021
城市 排放量/t 异戊二烯 单萜烯 倍半萜烯 含氧VOCs 其他VOCs 合计 济南市 6 634.64 4 297.38 1 636.67 8 047.31 3 694.85 24 488.13 青岛市 4 682.99 5 546.51 1 065.52 6 039.20 2 067.16 19 544.77 淄博市 3 960.88 2 614.99 926.09 4 590.72 1 998.02 14 169.22 枣庄市 1 236.03 1 212.84 543.29 2 623.53 944.35 6 605.89 东营市 1 059.16 561.00 146.84 2 012.53 800.28 4 598.99 烟台市 5 733.53 5 840.07 1 286.65 7 072.93 3 354.12 23 356.41 潍坊市 7 965.00 3 316.18 1 670.75 8 852.89 3 085.06 25 208.22 济宁市 3 910.60 1 939.57 861.40 6 702.99 2 264.51 15 863.45 泰安市 3 767.92 3 218.44 986.34 4 669.17 1 488.03 14 267.98 威海市 2 300.46 3 556.42 603.94 2 224.00 786.49 9 487.97 日照市 3 529.27 1 731.33 667.90 3 212.59 1 239.03 10 500.16 临沂市 8 640.40 5 956.16 2 088.35 10 107.19 3 426.06 30 618.21 德州市 3 650.07 1 981.07 758.77 7 735.12 2 525.22 16 835.75 聊城市 2 719.37 1 477.39 550.05 5 748.92 1 879.06 12 505.41 滨州市 2 602.21 1 166.09 411.43 4 468.77 1 487.04 10 231.73 菏泽市 3 537.30 2 311.92 768.92 8 859.28 2 909.82 18 554.90 表 4 山东省BVOCs排放量估算研究比较
Table 4. Comparison of studies on estimation of BVOCs emissions in Shandong Province
研究范围 研究时段 研究方法 植被数据 标准排放因子 BVOCs排放总量/(103 t/a) 数据来源 山东省 2021年 森林蓄积量 43树种 实测、国内外观测数据 256.84 该研究 山东省 2016年 森林蓄积量 16树种 国内外观测数据 198.00 文献[36] 山东省 2010年 MEGAN 2.04 遥感 模型自带 194.30 文献[37] 山东省 2018年 MEGAN 2.1 遥感
(仅分植被类型)等级制,无详细树种 325.60 文献[38] 全国 2005—2016年 MEGAN 3.0 遥感 模型自带 169.17(2005—2016年山东省年均排放量) 文献[39] 全国 2002年 森林蓄积量 抽样调查 国内外观测数据 411.70(山东省) 文献[40] 表 5 各树种BVOCs排放速率与环境因子的相关系数
Table 5. Correlation coefficient between BVOCs emission rate of each tree species and environmental factors
环境因子 BVOCs排放速率 栎树 杨树 柳树 白蜡 槐树 赤松 油松 黑松 柏树 光照 0.833** 0.754* −0.878** −0.878** 0.878** 0.058 0.941*** −0.657 −0.543 温度 0.878** 0.812** 0.878** −0.878** 0.926*** 0.293 −0.698 −0.679 1.000*** 土壤湿度 −0.878** −0.878** −0.878** −0.878** −0.878** 0.293 −0.878** −0.683 −0.878** 空气湿度 −0.878** −0.928*** −0.878** −0.880** −0.880** −0.293 0.880** 0.213 −0.878** 注:***、**、*分别代表1%、5%、10%的显著性水平. -
[1] HELMIG D,GUENTHER A,HUEBER J,et al.Ozone reactivity measurement of biogenic volatile organic compound emissions[J].Atmospheric Measurement Techniques,2022,15(18):5439-5454. doi: 10.5194/amt-15-5439-2022 [2] 冯兆忠,袁相洋.臭氧浓度升高对植物源挥发性有机化合物(BVOCs)影响的研究进展[J].环境科学,2018,39(11):5257-5265.FENG Z Z,YUAN X Y.Effects of elevated ozone on biogenic volatile organic compounds (BVOCs) emission:a review[J].Environmental Science,2018,39(11):5257-5265. [3] LUPAŞCU A,OTERO N,MINKOS A,et al.Attribution of surface ozone to NOx and VOC sources during two different high ozone events[J].Atmospheric chemistry and physics Discussions,2022,24(3):1-36. [4] STEINER A L.Role of the terrestrial biosphere in atmospheric chemistry and climate[J].Accounts of Chemical Research,2020,53(7):1260-1268. doi: 10.1021/acs.accounts.0c00116 [5] WU C.Emissions of biogenic volatile organic compounds and ozone balance under future climate conditions[D].Aachen:Rwth Aachen University,2015:95-97. [6] BAI J H,HAO N.The relationships between biogenic volatile organic compound (BVOC) emissions and atmospheric formaldehyde in a subtropical Pinus plantation in China[J].Ecology and Environmental Sciences,2018,27(6):991-999. [7] 山东省统计局.山东统计年鉴:2020[M]山东:中国统计出版社,2021. [8] 王笑哲,赵莎,郭灵辉,等.京津冀及周边地区“2+26”城市臭氧的季节性变化规律[J].环境科学研究,2022,35(8):1786-1797.WANG X Z,ZHAO S,GUO L H,et,al.Seasonal variation of ozone in ‘2+26’ cities in Beijing-Tianjin-Hebei Region and surrounding areas[J].Research of Environmental Sciences,2022,35(8):1786-1797. [9] 王楚迪,节龙飞,李苗苗,等.我国夏季不同类型植被BVOCs排放观测与模拟研究[J].环境科学研究,2022,35(6):1341-1350.WANG C D,JIE L F,LI M M,et al.Observation and simulation of BVOCs emission from different vegetation typesin summer in China[J].Research of Environmental Sciences,2022,35(6):1341-1350. [10] 桑博,魏凤霞.济南市区大气中 VOCs 的浓度、来源及健康风险评价[J].中国科学院大学学报,2019,36(2):169-177.SANG B,WEI F X.Investigation on the concentration,source,and health risk assessment of atmospheric VOCs in urban Jinan[J].Journal of University of Chinese Academy of Sciences,2019,36(2):169-177. [11] 李跃武,柴文轩,赵月,等.我国重点区域环境大气VOCs监测体系现状及发展方向[J].环境科学研究,2023,36(5):857-865.LI Y W,CHAI W X,ZHAO Y,et al.VOCs monitoring system status and development direction in key regions of China[J].Research of Environmental Sciences,2023,36(5):857-865. [12] LI J,XIE X,LI L,et al.Fate of oxygenated volatile organic compounds in the Yangtze River Delta Region:source contributions and impacts on the atmospheric oxidation capacity[J].Environmental Science & Technology,2022,56(16):11212-11224. [13] YENISOY-KARAKAŞ S,DÖRTER M,ODABASI M.Intraday and interday variations of 69 volatile organic compounds (BVOCs and AVOCs) and their source profiles at a semi-urban site[J].Science of the Total Environment,2020,723:138028. doi: 10.1016/j.scitotenv.2020.138028 [14] BARREIRA L M F,YLISIRNIÖ A,PULLINEN I,et al.The importance of sesquiterpene oxidation products for secondary organic aerosol formation in a springtime hemiboreal forest[J].Atmospheric Chemistry and Physics,2021,21(15):11781-11800. doi: 10.5194/acp-21-11781-2021 [15] LUTTKUS M L,WOLKE R,HEINOLD B,et al.Biogenic emissions and urban air quality[C].Berlin:Springer,2019. [16] WU J,LONG J,LIU H,et al.Biogenic volatile organic compounds from 14 landscape woody species:tree species selection in the construction of urban greenspace with forest healthcare effects[J].Journal of Environmental Management,2021,300:113761. doi: 10.1016/j.jenvman.2021.113761 [17] 王荣.沙棘木蠹蛾发生与林分植物多样性和挥发物的关系[D].北京:北京林业大学,2014:16-19. [18] GUENTHER A B,ZIMMERMAN P R,HARLEY P C,et al.Isoprene and monoterpene emission rate variability:model evaluations and sensitivity analyses[J].Journal of Geophysical Research:Atmospheres,1993,98(D7):12609-12617. doi: 10.1029/93JD00527 [19] LI L,LI Y,XIE S D.A statistical approach for estimating representative emission rates of biogenic volatile organic compounds and their determination for 192 plant species/genera in China[J].Atmospheric Chemistry and Physics Discussions,2017.doi: 10.5194/acp-2016-1116. [20] GUENTHER A B,JIANG X,HEALD C L,et al.The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1):an extended and updated framework for modeling biogenic emissions[J].Geoscientific Model Development,2012,5(6):1471-1492. doi: 10.5194/gmd-5-1471-2012 [21] 方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明[J].植物生态学报,2002(2):243-249.FANG J Y,CHEN A P,ZHAO S Q,et al.Estimating biomass carbon of China's forests:supplementary notes on report published in science (291:2320-2322) by FANG et al.(2001)[J].Chinese Journal of Plant Ecology,2002(2):243-249. [22] 中国林业科学研究院木材工业研究所.中国主要树种的木材物理学性质[M].北京:中国林业出版社,1982:99-117. [23] 冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999:187-225. [24] 罗天祥.中国主要森林类型生物生产力格局及其数学模型[D].北京:中国科学院研究生院(国家计划委员会自然资源综合考察委员会),1996:199-245. [25] BACHY A,AUBINET M,AMELYNCK C,et al.Dynamics and mechanisms of volatile organic compound exchanges in a winter wheat field[J].Atmospheric Environment,2020,221:117105. doi: 10.1016/j.atmosenv.2019.117105 [26] HAVERMANN F,GHIRARDO A,SCHNITZLER J P,et al.Modeling intra- and interannual variability of BVOC emissions from maize,oil- seed rape,and ryegrass[J].Journal of Advances in Modeling Earth Systems,2022,14(3):15-22. [27] 张金良,孔雨光,路洪春,等.山东杨树采伐更新规律的研究[J].山东林业科技,2018,48(5):67-69. doi: 10.3969/j.issn.1002-2724.2018.05.017ZHANG J L,KONG Y G,LU H C,et al.Study on the law of cutting and regeneration of poplar in Shandong Province[J].Journal of Shandong Forestry Science and Technology,2018,48(5):67-69. doi: 10.3969/j.issn.1002-2724.2018.05.017 [28] WANG X L,WANG A,SHI H H,et al.Carbon storage of Pinus thunbergii and Robinia pseudoacacia plantations on Nanchangshan Island,Changdao County of Shandong Province,China[J].The Journal of Applied Ecology,2013,24(5):1263-1268. [29] 许景伟,李琪,王卫东,等.沙岸黑松海防林防护成熟期及更新年龄的研究[J].林业科学,2003(2):91-97.XU J W,LI Q,WANG W D,et al.Studies on the protective maturity period and regeneration age of pinusthunbergii protection forest on sandy coast,Shandong Province[J].Scientia Silvae Sinicae,2003(2):91-97. [30] BAI J,GUENTHER A,TURNIPSEED A,et al.Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China[J].Atmospheric Environment,2017,161:176-190. doi: 10.1016/j.atmosenv.2017.05.002 [31] NIINEMETS Ü,LORETO F,REICHSTEIN M.Physiological and physicochemical controls on foliar volatile organic compound emissions[J].Trends in Plant Science,2004,9(4):180-186. doi: 10.1016/j.tplants.2004.02.006 [32] VAN M Y,SCHURGERS G,RINNAN R,et al.Isoprenoid emission response to changing light conditions of English oak,European beech and Norway spruce[J].Biogeosciences,2017,14(18):4045-4060. doi: 10.5194/bg-14-4045-2017 [33] WILLIAM P L,CARTER.Development of ozone reactivity scales for volatile organic compounds[J].Air & Waste,2012,44(7):881-899. [34] 李明燕.山东省臭氧污染特征及驱动因素区域差异化研究[D].济南:山东师范大学,2021:31-33. [35] 赵敏,申恒青,陈天舒,等.黄河三角洲典型城市夏季臭氧污染特征与敏感性分析[J].环境科学研究,2022,35(6):1351-1361.ZHAO M,SHEN H Q,CHEN T S,et al.Characteristics and sensitivity analysis of ozone in the representative city of the Yellow River Delta in summer[J].Research of Environmental Sciences,2022,35(6):1351-1361. [36] 韩枝燏,谭玉冉,杜金花,等.山东省植物源挥发性有机物排放特征及清单构建[J].青岛理工大学学报,2023,44(1):101-109.HAN Z Y,TAN Y R,DU J H,et al.Emission characteristics and inventory of BVOCs in Shandong Province[J].Journal of Qingdao University of Technology,2023,44(1):101-109. [37] 宋媛媛,张艳燕,王勤耕,等.基于遥感资料的中国东部地区植被VOCs排放强度研究[J].环境科学学报,2012,32(9):2216-2227.SONG Y Y,ZHANG Y Y,WANG Q G,et al.Emission of biogenic VOCs in Eastern China based on remote sensing data[J].Acta Scientiae Circumstantiae,2012,32(9):2216-2227. [38] LI L,ZHANG B,CAO J,et al.Isoprenoid emissions from natural vegetation increased rapidly in Eastern China[J].Environmental Research,2021,200:11462-11475. [39] 高超,张学磊,修艾军,等.中国生物源挥发性有机物(BVOCs)时空排放特征研究[J].环境科学学报,2019,39(12):4140-4151.GAO C,ZHANG X L,XIU A J,et al.Spatiotemporal distribution of biogenic volatile organic compounds emissions in China[J].Acta Scientiae Circumstantiae,2019,39(12):4140-4151. [40] KLINGER L F,LI Q J,GUENTHER A B,et al.Assessment of volatile organic compound emissions from ecosystems of China[J].Journal of Geophysical Research:Atmospheres,2002,107(21):7-21. [41] CHEN T F,CHEN C H,YU J Y,et al.Estimation of biogenic VOC emissions in East Asia with new emission factors and leaf energy balance considerations[J].Journal of Open Innovation:Technology,Market,and Complexity,2020,2(2):61-72. [42] GRAY D W,GOLDSTEIN A H,LERDAU M T.The influence of light environment on photosynthesis and basal methylbutenol emission from Pinus ponderosa[J].Plant,Cell & Environment,2005,28(12):1463-1474. [43] LI Z,RATLIFF E A,SHARKEY T D.Effect of temperature on postillumination isoprene emission in oak and poplar[J].Plant Physiology,2011,155(2):1037-1046. doi: 10.1104/pp.110.167551 [44] HARLEY P C.The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves[M].Dordrecht:Springer,2013:181-208. [45] 苟艳,刘忠川,王刚刚.异戊二烯合成酶研究进展[J].生物工程学报,2017,33(11):1802-1813.GOU Y,LIU Z C,WANG G G.Advances in isoperen synthase research.[J].Chinese Journal of Biotechnology,2017,33(11):1802-1813. [46] OKU H,MUTANDA I,INAFUKU M.Molecular characteristics of isoprene synthase and its control effects on isoprene emissions from tropical trees[J].Journal of Plant Research,2022:1-20. [47] 马煦,曹治国,岳晨,等.降雨和灌溉影响下毛白杨叶片的颗粒物滞纳特征变化及其生理特性响应规律[J].林业科学,2020,56(8):181-190. doi: 10.11707/j.1001-7488.20200820MA X,CAO Z G,YUE C,et al.Changes of particulate matter retention characteristics and the response of physiological characteristics of poplar leaves under the influence of rainfall and lrrigation[J].Scientia Silvae Sinicae,2020,56(8):181-190. doi: 10.11707/j.1001-7488.20200820 [48] 宁平,郭霞,田森林,等.昆明地区典型乔木主要挥发性有机物释放规律[J].中南大学学报(自然科学版),2013,44(3):1290-1296.NING P,GUO X,TIAN S L,et al.Emission of main BVOCs for typical landscape trees in Kunming[J].Journal of Central South University (Science and Technology),2013,44(3):1290-1296. [49] ALTIMIR N,KOLARI P,TUOVINEN J P,et al.Foliage surface ozone deposition:a role for surface moisture?[J].Biogeosciences,2006,3(2):209-228. doi: 10.5194/bg-3-209-2006 [50] STAUDT M,BYRON J,PIQUEMAL K,et al.Compartment specific chiral pinene emissions identified in a Maritime pine forest[J].Science of the Total Environment,2019,654:1158-1166. doi: 10.1016/j.scitotenv.2018.11.146 [51] ŠIMPRAGA M,VERBEECK H,DEMARCKE M,et al.Clear link between drought stress,photosynthesis and biogenic volatile organic compounds in Fagus sylvatica L.[J].Atmospheric Environment,2011,45(30):5254-5259. doi: 10.1016/j.atmosenv.2011.06.075 [52] WU C,PULLINEN I,ANDRES S,et al.Impacts of soil moisture on de novo monoterpene emissions from European beech,Holm oak,Scots pine,and Norway spruce[J].Biogeosciences,2015,12(1):177-191. doi: 10.5194/bg-12-177-2015 [53] VALLAT A,GU H,DORN S.How rainfall,relative humidity and temperature influence volatile emissions from apple trees in situ[J].Phytochemistry,2005,66(13):1540-1550. doi: 10.1016/j.phytochem.2005.04.038 [54] 黄幸然.亚热带主要乔木异戊二烯和单萜烯释放对多环境因子的响应[D].福州:福建农林大学,2020:12-17. -