留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山东省植物源挥发性有机物排放特征

赵丹青 伦小秀 王强 吴鞠 王璇 冯如帆

赵丹青, 伦小秀, 王强, 吴鞠, 王璇, 冯如帆. 山东省植物源挥发性有机物排放特征[J]. 环境科学研究, 2023, 36(8): 1487-1497. doi: 10.13198/j.issn.1001-6929.2023.05.06
引用本文: 赵丹青, 伦小秀, 王强, 吴鞠, 王璇, 冯如帆. 山东省植物源挥发性有机物排放特征[J]. 环境科学研究, 2023, 36(8): 1487-1497. doi: 10.13198/j.issn.1001-6929.2023.05.06
ZHAO Danqing, LUN Xiaoxiu, WANG Qiang, WU Ju, WANG Xuan, FENG Rufan. Emission Characteristics of Biogenic Volatile Organic Compounds in Shandong Province[J]. Research of Environmental Sciences, 2023, 36(8): 1487-1497. doi: 10.13198/j.issn.1001-6929.2023.05.06
Citation: ZHAO Danqing, LUN Xiaoxiu, WANG Qiang, WU Ju, WANG Xuan, FENG Rufan. Emission Characteristics of Biogenic Volatile Organic Compounds in Shandong Province[J]. Research of Environmental Sciences, 2023, 36(8): 1487-1497. doi: 10.13198/j.issn.1001-6929.2023.05.06

山东省植物源挥发性有机物排放特征

doi: 10.13198/j.issn.1001-6929.2023.05.06
基金项目: 国家自然科学基金项目(No.42077454);大气重污染成因与治理攻关项目(No.DQGG202126)
详细信息
    作者简介:

    赵丹青(1997-),女,山东临沂人,zhaodanqing@bjfu.edu.cn

    通讯作者:

    伦小秀(1975-),女,山东潍坊人,教授,博士,博导,主要从事大气污染控制研究,lunxiaoxiu@bjfu.edu.cn

  • 中图分类号: X610

Emission Characteristics of Biogenic Volatile Organic Compounds in Shandong Province

Funds: National Natural Science Foundation of China (No.42077454); National Research Program for Key Issues in Air Pollution Control, China (No.DQGG202126)
  • 摘要: 山东省夏季主要大气污染物为臭氧(O3),植物源挥发性有机物(BVOCs)作为O3生成的重要前体物,其排放量的准确计算将在大气污染防治中起到重要作用. 本文对山东省9个优势树种降雨前后的BVOCs排放速率和相关气象因子进行实地监测,采用G95光温模型-遥感叶生物量校正法,结合树种蓄积量信息,计算得到山东省BVOCs排放总量. 结果表明:①山东省2021年BVOCs总排放量为256 837.21 t,排放物质以异戊二烯(25.75%)和含氧VOCs(36.61%)为主,单萜烯(18.20%)、倍半萜烯(5.83%)和其他VOCs(13.61%)相对较少. ②森林和农田是主要的BVOCs排放源,排放量占比分别为58.81%和32.07%. ③BVOCs排放量较大的4个城市分别为临沂市(11.92%)、潍坊市(9.81%)、济南市(9.53%)和烟台市(9.09%). ④针叶树种侧柏(Platycladus orientalis)、赤松(Pinus densiflora),阔叶树种白蜡(Fraxinus chinensis)、刺槐(Robinia pseudoacacia)、杨树(Populus tomentosa)、栎树(Quercus mongolica)、柳树(Salix babylonica)7个树种BVOCs排放速率在降雨后均显著降低,降幅在20.71%~93.94%之间. 研究显示,山东省夏季BVOCs排放量较高,具有明显的季节性特征;降雨可不同程度地降低植被BVOCs排放量,夏季O3污染高发期可通过人工降雨或洒水降低O3前体物浓度,削减O3生成.

     

  • 图  1  动态顶空采样装置

    Figure  1.  Dynamic headspace sampling installation diagram

    图  2  山东省11种优势树种BVOCs排放的林龄占比

    Figure  2.  The age distribution of BVOCs emission from 11 dominant tree species in Shandong Province

    图  3  森林和农田BVOCs排放量的月变化情况

    Figure  3.  The monthly variation of BVOCs emissions from forest and farmland

    图  4  降雨前后山东省优势树种BVOCs排放速率

    Figure  4.  BVOCs emission rate of dominant tree species in Shandong Province before and after precipitation

    表  1  采样环境条件

    Table  1.   Environment condition during sampling period

    项目采样日期采样时段空气湿度/%温度/℃PAR/[μmol/(m2∙s)]土壤湿度/%降雨量/mm
    侧柏雨前2022-07-2010:00—11:0034.4735.3185.4039.9
    雨后2022-07-0810:00—11:0063.2027.2441.0059.228.5
    白蜡雨前2022-08-1010:00—11:0032.6031.9210.6729.3
    雨后2022-08-2210:00—11:0049.6032.2473.3058.422.8
    刺槐雨前2022-08-1014:00—15:0049.6031.9210.6727.3
    雨后2022-08-2314:45—15:4554.2026.3151.5756.519.1
    黑松雨前2022-08-1110:00—11:0063.6731.21 136.7860.9
    雨后2022-08-1610:00—11:0059.2930.8699.0065.59.8
    杨树雨前2022-08-0311:00—12:0015.4033.41 048.5638.9
    雨后2022-08-1514:00—15:0066.4325.6236.6761.39.8
    赤松雨前2022-10-2210:00—11:0046.3020.3881.0045.3
    雨后2022-10-2211:00—12:0072.4324.5486.6763.918.7
    栎树雨前2022-07-1515:09—16:0917.3732.1863.8932.7
    雨后2022-08-1714:45—15:4568.7026.6136.2355.916.9
    油松雨前2022-08-1214:00—15:0016.7022.6182.2728.9
    雨后2022-08-1814:00—15:0068.4522.11 491.3358.716.9
    柳树雨前2022-09-2610:05—11:0517.8029.2195.0030.7
    雨后2022-10-1710:00—11:0059.9019.6207.6760.515.7
    下载: 导出CSV

    表  2  山东省BVOCs排放清单

    Table  2.   BVOCs emission inventory of Shandong Province

    植被类型植被类型排放量/t
    异戊二烯单萜烯倍半萜烯含氧VOCs其他VOCs合计
    阔叶树种杨树38 458.084 103.716 337.9223 059.247 543.3279 502.26
    其他软阔10 542.32894.547.0310.72894.5412 349.15
    刺槐4 076.15243.180.002 407.07188.896 915.29
    栎类2 278.19146.041 212.371 350.29315.485 302.37
    其他硬阔1 990.56118.760.001 175.4892.243 377.04
    山杨2 469.0918.470.4723.6770.842 582.53
    柳树735.32139.6222.04152.41425.091 474.48
    泡桐350.75145.56129.75249.01382.321 257.39
    板栗16.791 096.222.0421.62115.801 252.47
    榆树7.9448.6519.2623.5848.65148.08
    核桃66.010.004.580.0057.25127.84
    水曲柳102.354.960.010.1414.05121.52
    银杏12.9450.830.150.2322.8386.97
    白蜡树0.009.025.2043.9813.5571.75
    柿树8.2821.460.400.066.0736.28
    桉树13.382.030.070.661.0217.16
    楝树0.480.090.0111.091.3313.00
    黄波罗0.289.560.020.180.0010.04
    椴树3.413.380.030.330.307.46
    杜仲3.650.550.010.020.694.93
    枫香3.220.980.010.110.034.34
    胡桃楸0.001.500.000.180.051.74
    漆树0.320.030.000.000.030.38
    樟木0.000.010.000.360.000.37
    白桦0.050.000.000.000.050.10
    厚朴0.000.010.000.030.000.04
    栓皮栎0.010.000.000.000.000.02
    下载: 导出CSV
    续表 
    植被类型植被类型排放量/t
    异戊二烯单萜烯倍半萜烯含氧VOCs其他VOCs合计
    针叶树种黑松0.0015 192.381 890.563 225.68487.4920 796.11
    柏木0.005 118.292 796.611 896.60598.2010 409.71
    赤松0.002 584.47311.15265.1938.183 198.98
    油松0.001 405.0757.27134.5016.541 613.38
    其他松类92.8173.9312.461.7173.93254.85
    樟子松0.816.801.358.5127.3644.82
    其他杉类7.8427.440.513.200.3939.38
    水杉0.485.832.691.614.0314.63
    火炬松0.040.680.441.993.416.57
    华山松0.043.150.200.311.535.24
    乔松0.000.420.150.070.050.68
    高山松0.000.180.000.000.010.19
    落叶松0.000.000.000.000.000.01
    农田玉米401.126 539.92965.1323 842.947 468.8339 217.93
    小麦272.384 796.68707.8717 487.525 477.9928 742.45
    花生66.421 066.23157.353 887.231 217.686 394.91
    豆类25.91414.9361.231 512.73473.862 488.67
    棉花20.10342.1850.501 247.51390.782 051.07
    薯类17.69290.9042.931 060.55332.221 744.29
    谷类18.01282.0441.621 028.24322.101 692.00
    油菜0.507.731.1428.198.8346.39
    灌木3 866.111 508.92130.378 802.406 811.2621 119.06
    草地213.357.992.881 071.14995.522 290.87
    合计66 143.1846 735.3514 975.7894 038.2834 944.61256 837.21
    下载: 导出CSV

    表  3  山东省各地级市2021年BVOCs排放量

    Table  3.   BVOCs emissions from prefecture-level cities in Shandong Province in 2021

    城市排放量/t
    异戊二烯单萜烯倍半萜烯含氧VOCs其他VOCs合计
    济南市6 634.644 297.381 636.678 047.313 694.8524 488.13
    青岛市4 682.995 546.511 065.526 039.202 067.1619 544.77
    淄博市3 960.882 614.99926.094 590.721 998.0214 169.22
    枣庄市1 236.031 212.84543.292 623.53944.356 605.89
    东营市1 059.16561.00146.842 012.53800.284 598.99
    烟台市5 733.535 840.071 286.657 072.933 354.1223 356.41
    潍坊市7 965.003 316.181 670.758 852.893 085.0625 208.22
    济宁市3 910.601 939.57861.406 702.992 264.5115 863.45
    泰安市3 767.923 218.44986.344 669.171 488.0314 267.98
    威海市2 300.463 556.42603.942 224.00786.499 487.97
    日照市3 529.271 731.33667.903 212.591 239.0310 500.16
    临沂市8 640.405 956.162 088.3510 107.193 426.0630 618.21
    德州市3 650.071 981.07758.777 735.122 525.2216 835.75
    聊城市2 719.371 477.39550.055 748.921 879.0612 505.41
    滨州市2 602.211 166.09411.434 468.771 487.0410 231.73
    菏泽市3 537.302 311.92768.928 859.282 909.8218 554.90
    下载: 导出CSV

    表  4  山东省BVOCs排放量估算研究比较

    Table  4.   Comparison of studies on estimation of BVOCs emissions in Shandong Province

    研究范围研究时段研究方法植被数据标准排放因子BVOCs排放总量/(103 t/a)数据来源
    山东省2021年森林蓄积量43树种实测、国内外观测数据256.84该研究
    山东省2016年森林蓄积量16树种国内外观测数据198.00文献[36]
    山东省2010年MEGAN 2.04遥感模型自带194.30文献[37]
    山东省2018年MEGAN 2.1遥感
    (仅分植被类型)
    等级制,无详细树种325.60文献[38]
    全国2005—2016年MEGAN 3.0遥感模型自带169.17(2005—2016年山东省年均排放量)文献[39]
    全国2002年森林蓄积量抽样调查国内外观测数据411.70(山东省)文献[40]
    下载: 导出CSV

    表  5  各树种BVOCs排放速率与环境因子的相关系数

    Table  5.   Correlation coefficient between BVOCs emission rate of each tree species and environmental factors

    环境因子BVOCs排放速率
    栎树杨树柳树白蜡槐树赤松油松黑松柏树
    光照0.833**0.754*−0.878**−0.878**0.878**0.0580.941***−0.657−0.543
    温度0.878**0.812**0.878**−0.878**0.926***0.293−0.698−0.6791.000***
    土壤湿度−0.878**−0.878**−0.878**−0.878**−0.878**0.293−0.878**−0.683−0.878**
    空气湿度−0.878**−0.928***−0.878**−0.880**−0.880**−0.2930.880**0.213−0.878**
    注:***、**、*分别代表1%、5%、10%的显著性水平.
    下载: 导出CSV
  • [1] HELMIG D,GUENTHER A,HUEBER J,et al.Ozone reactivity measurement of biogenic volatile organic compound emissions[J].Atmospheric Measurement Techniques,2022,15(18):5439-5454. doi: 10.5194/amt-15-5439-2022
    [2] 冯兆忠,袁相洋.臭氧浓度升高对植物源挥发性有机化合物(BVOCs)影响的研究进展[J].环境科学,2018,39(11):5257-5265.

    FENG Z Z,YUAN X Y.Effects of elevated ozone on biogenic volatile organic compounds (BVOCs) emission:a review[J].Environmental Science,2018,39(11):5257-5265.
    [3] LUPAŞCU A,OTERO N,MINKOS A,et al.Attribution of surface ozone to NOx and VOC sources during two different high ozone events[J].Atmospheric chemistry and physics Discussions,2022,24(3):1-36.
    [4] STEINER A L.Role of the terrestrial biosphere in atmospheric chemistry and climate[J].Accounts of Chemical Research,2020,53(7):1260-1268. doi: 10.1021/acs.accounts.0c00116
    [5] WU C.Emissions of biogenic volatile organic compounds and ozone balance under future climate conditions[D].Aachen:Rwth Aachen University,2015:95-97.
    [6] BAI J H,HAO N.The relationships between biogenic volatile organic compound (BVOC) emissions and atmospheric formaldehyde in a subtropical Pinus plantation in China[J].Ecology and Environmental Sciences,2018,27(6):991-999.
    [7] 山东省统计局.山东统计年鉴:2020[M]山东:中国统计出版社,2021.
    [8] 王笑哲,赵莎,郭灵辉,等.京津冀及周边地区“2+26”城市臭氧的季节性变化规律[J].环境科学研究,2022,35(8):1786-1797.

    WANG X Z,ZHAO S,GUO L H,et,al.Seasonal variation of ozone in ‘2+26’ cities in Beijing-Tianjin-Hebei Region and surrounding areas[J].Research of Environmental Sciences,2022,35(8):1786-1797.
    [9] 王楚迪,节龙飞,李苗苗,等.我国夏季不同类型植被BVOCs排放观测与模拟研究[J].环境科学研究,2022,35(6):1341-1350.

    WANG C D,JIE L F,LI M M,et al.Observation and simulation of BVOCs emission from different vegetation typesin summer in China[J].Research of Environmental Sciences,2022,35(6):1341-1350.
    [10] 桑博,魏凤霞.济南市区大气中 VOCs 的浓度、来源及健康风险评价[J].中国科学院大学学报,2019,36(2):169-177.

    SANG B,WEI F X.Investigation on the concentration,source,and health risk assessment of atmospheric VOCs in urban Jinan[J].Journal of University of Chinese Academy of Sciences,2019,36(2):169-177.
    [11] 李跃武,柴文轩,赵月,等.我国重点区域环境大气VOCs监测体系现状及发展方向[J].环境科学研究,2023,36(5):857-865.

    LI Y W,CHAI W X,ZHAO Y,et al.VOCs monitoring system status and development direction in key regions of China[J].Research of Environmental Sciences,2023,36(5):857-865.
    [12] LI J,XIE X,LI L,et al.Fate of oxygenated volatile organic compounds in the Yangtze River Delta Region:source contributions and impacts on the atmospheric oxidation capacity[J].Environmental Science & Technology,2022,56(16):11212-11224.
    [13] YENISOY-KARAKAŞ S,DÖRTER M,ODABASI M.Intraday and interday variations of 69 volatile organic compounds (BVOCs and AVOCs) and their source profiles at a semi-urban site[J].Science of the Total Environment,2020,723:138028. doi: 10.1016/j.scitotenv.2020.138028
    [14] BARREIRA L M F,YLISIRNIÖ A,PULLINEN I,et al.The importance of sesquiterpene oxidation products for secondary organic aerosol formation in a springtime hemiboreal forest[J].Atmospheric Chemistry and Physics,2021,21(15):11781-11800. doi: 10.5194/acp-21-11781-2021
    [15] LUTTKUS M L,WOLKE R,HEINOLD B,et al.Biogenic emissions and urban air quality[C].Berlin:Springer,2019.
    [16] WU J,LONG J,LIU H,et al.Biogenic volatile organic compounds from 14 landscape woody species:tree species selection in the construction of urban greenspace with forest healthcare effects[J].Journal of Environmental Management,2021,300:113761. doi: 10.1016/j.jenvman.2021.113761
    [17] 王荣.沙棘木蠹蛾发生与林分植物多样性和挥发物的关系[D].北京:北京林业大学,2014:16-19.
    [18] GUENTHER A B,ZIMMERMAN P R,HARLEY P C,et al.Isoprene and monoterpene emission rate variability:model evaluations and sensitivity analyses[J].Journal of Geophysical Research:Atmospheres,1993,98(D7):12609-12617. doi: 10.1029/93JD00527
    [19] LI L,LI Y,XIE S D.A statistical approach for estimating representative emission rates of biogenic volatile organic compounds and their determination for 192 plant species/genera in China[J].Atmospheric Chemistry and Physics Discussions,2017.doi: 10.5194/acp-2016-1116.
    [20] GUENTHER A B,JIANG X,HEALD C L,et al.The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1):an extended and updated framework for modeling biogenic emissions[J].Geoscientific Model Development,2012,5(6):1471-1492. doi: 10.5194/gmd-5-1471-2012
    [21] 方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明[J].植物生态学报,2002(2):243-249.

    FANG J Y,CHEN A P,ZHAO S Q,et al.Estimating biomass carbon of China's forests:supplementary notes on report published in science (291:2320-2322) by FANG et al.(2001)[J].Chinese Journal of Plant Ecology,2002(2):243-249.
    [22] 中国林业科学研究院木材工业研究所.中国主要树种的木材物理学性质[M].北京:中国林业出版社,1982:99-117.
    [23] 冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999:187-225.
    [24] 罗天祥.中国主要森林类型生物生产力格局及其数学模型[D].北京:中国科学院研究生院(国家计划委员会自然资源综合考察委员会),1996:199-245.
    [25] BACHY A,AUBINET M,AMELYNCK C,et al.Dynamics and mechanisms of volatile organic compound exchanges in a winter wheat field[J].Atmospheric Environment,2020,221:117105. doi: 10.1016/j.atmosenv.2019.117105
    [26] HAVERMANN F,GHIRARDO A,SCHNITZLER J P,et al.Modeling intra- and interannual variability of BVOC emissions from maize,oil- seed rape,and ryegrass[J].Journal of Advances in Modeling Earth Systems,2022,14(3):15-22.
    [27] 张金良,孔雨光,路洪春,等.山东杨树采伐更新规律的研究[J].山东林业科技,2018,48(5):67-69. doi: 10.3969/j.issn.1002-2724.2018.05.017

    ZHANG J L,KONG Y G,LU H C,et al.Study on the law of cutting and regeneration of poplar in Shandong Province[J].Journal of Shandong Forestry Science and Technology,2018,48(5):67-69. doi: 10.3969/j.issn.1002-2724.2018.05.017
    [28] WANG X L,WANG A,SHI H H,et al.Carbon storage of Pinus thunbergii and Robinia pseudoacacia plantations on Nanchangshan Island,Changdao County of Shandong Province,China[J].The Journal of Applied Ecology,2013,24(5):1263-1268.
    [29] 许景伟,李琪,王卫东,等.沙岸黑松海防林防护成熟期及更新年龄的研究[J].林业科学,2003(2):91-97.

    XU J W,LI Q,WANG W D,et al.Studies on the protective maturity period and regeneration age of pinusthunbergii protection forest on sandy coast,Shandong Province[J].Scientia Silvae Sinicae,2003(2):91-97.
    [30] BAI J,GUENTHER A,TURNIPSEED A,et al.Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China[J].Atmospheric Environment,2017,161:176-190. doi: 10.1016/j.atmosenv.2017.05.002
    [31] NIINEMETS Ü,LORETO F,REICHSTEIN M.Physiological and physicochemical controls on foliar volatile organic compound emissions[J].Trends in Plant Science,2004,9(4):180-186. doi: 10.1016/j.tplants.2004.02.006
    [32] VAN M Y,SCHURGERS G,RINNAN R,et al.Isoprenoid emission response to changing light conditions of English oak,European beech and Norway spruce[J].Biogeosciences,2017,14(18):4045-4060. doi: 10.5194/bg-14-4045-2017
    [33] WILLIAM P L,CARTER.Development of ozone reactivity scales for volatile organic compounds[J].Air & Waste,2012,44(7):881-899.
    [34] 李明燕.山东省臭氧污染特征及驱动因素区域差异化研究[D].济南:山东师范大学,2021:31-33.
    [35] 赵敏,申恒青,陈天舒,等.黄河三角洲典型城市夏季臭氧污染特征与敏感性分析[J].环境科学研究,2022,35(6):1351-1361.

    ZHAO M,SHEN H Q,CHEN T S,et al.Characteristics and sensitivity analysis of ozone in the representative city of the Yellow River Delta in summer[J].Research of Environmental Sciences,2022,35(6):1351-1361.
    [36] 韩枝燏,谭玉冉,杜金花,等.山东省植物源挥发性有机物排放特征及清单构建[J].青岛理工大学学报,2023,44(1):101-109.

    HAN Z Y,TAN Y R,DU J H,et al.Emission characteristics and inventory of BVOCs in Shandong Province[J].Journal of Qingdao University of Technology,2023,44(1):101-109.
    [37] 宋媛媛,张艳燕,王勤耕,等.基于遥感资料的中国东部地区植被VOCs排放强度研究[J].环境科学学报,2012,32(9):2216-2227.

    SONG Y Y,ZHANG Y Y,WANG Q G,et al.Emission of biogenic VOCs in Eastern China based on remote sensing data[J].Acta Scientiae Circumstantiae,2012,32(9):2216-2227.
    [38] LI L,ZHANG B,CAO J,et al.Isoprenoid emissions from natural vegetation increased rapidly in Eastern China[J].Environmental Research,2021,200:11462-11475.
    [39] 高超,张学磊,修艾军,等.中国生物源挥发性有机物(BVOCs)时空排放特征研究[J].环境科学学报,2019,39(12):4140-4151.

    GAO C,ZHANG X L,XIU A J,et al.Spatiotemporal distribution of biogenic volatile organic compounds emissions in China[J].Acta Scientiae Circumstantiae,2019,39(12):4140-4151.
    [40] KLINGER L F,LI Q J,GUENTHER A B,et al.Assessment of volatile organic compound emissions from ecosystems of China[J].Journal of Geophysical Research:Atmospheres,2002,107(21):7-21.
    [41] CHEN T F,CHEN C H,YU J Y,et al.Estimation of biogenic VOC emissions in East Asia with new emission factors and leaf energy balance considerations[J].Journal of Open Innovation:Technology,Market,and Complexity,2020,2(2):61-72.
    [42] GRAY D W,GOLDSTEIN A H,LERDAU M T.The influence of light environment on photosynthesis and basal methylbutenol emission from Pinus ponderosa[J].Plant,Cell & Environment,2005,28(12):1463-1474.
    [43] LI Z,RATLIFF E A,SHARKEY T D.Effect of temperature on postillumination isoprene emission in oak and poplar[J].Plant Physiology,2011,155(2):1037-1046. doi: 10.1104/pp.110.167551
    [44] HARLEY P C.The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves[M].Dordrecht:Springer,2013:181-208.
    [45] 苟艳,刘忠川,王刚刚.异戊二烯合成酶研究进展[J].生物工程学报,2017,33(11):1802-1813.

    GOU Y,LIU Z C,WANG G G.Advances in isoperen synthase research.[J].Chinese Journal of Biotechnology,2017,33(11):1802-1813.
    [46] OKU H,MUTANDA I,INAFUKU M.Molecular characteristics of isoprene synthase and its control effects on isoprene emissions from tropical trees[J].Journal of Plant Research,2022:1-20.
    [47] 马煦,曹治国,岳晨,等.降雨和灌溉影响下毛白杨叶片的颗粒物滞纳特征变化及其生理特性响应规律[J].林业科学,2020,56(8):181-190. doi: 10.11707/j.1001-7488.20200820

    MA X,CAO Z G,YUE C,et al.Changes of particulate matter retention characteristics and the response of physiological characteristics of poplar leaves under the influence of rainfall and lrrigation[J].Scientia Silvae Sinicae,2020,56(8):181-190. doi: 10.11707/j.1001-7488.20200820
    [48] 宁平,郭霞,田森林,等.昆明地区典型乔木主要挥发性有机物释放规律[J].中南大学学报(自然科学版),2013,44(3):1290-1296.

    NING P,GUO X,TIAN S L,et al.Emission of main BVOCs for typical landscape trees in Kunming[J].Journal of Central South University (Science and Technology),2013,44(3):1290-1296.
    [49] ALTIMIR N,KOLARI P,TUOVINEN J P,et al.Foliage surface ozone deposition:a role for surface moisture?[J].Biogeosciences,2006,3(2):209-228. doi: 10.5194/bg-3-209-2006
    [50] STAUDT M,BYRON J,PIQUEMAL K,et al.Compartment specific chiral pinene emissions identified in a Maritime pine forest[J].Science of the Total Environment,2019,654:1158-1166. doi: 10.1016/j.scitotenv.2018.11.146
    [51] ŠIMPRAGA M,VERBEECK H,DEMARCKE M,et al.Clear link between drought stress,photosynthesis and biogenic volatile organic compounds in Fagus sylvatica L.[J].Atmospheric Environment,2011,45(30):5254-5259. doi: 10.1016/j.atmosenv.2011.06.075
    [52] WU C,PULLINEN I,ANDRES S,et al.Impacts of soil moisture on de novo monoterpene emissions from European beech,Holm oak,Scots pine,and Norway spruce[J].Biogeosciences,2015,12(1):177-191. doi: 10.5194/bg-12-177-2015
    [53] VALLAT A,GU H,DORN S.How rainfall,relative humidity and temperature influence volatile emissions from apple trees in situ[J].Phytochemistry,2005,66(13):1540-1550. doi: 10.1016/j.phytochem.2005.04.038
    [54] 黄幸然.亚热带主要乔木异戊二烯和单萜烯释放对多环境因子的响应[D].福州:福建农林大学,2020:12-17.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  44
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-12
  • 修回日期:  2023-05-08

目录

    /

    返回文章
    返回