Correlation Characterization of PM2.5 and O3 Pollution in a Typical City in Beijing-Tianjin-Hebei Region
-
摘要: 近年来,PM2.5-O3复合污染已经成为我国空气污染的主要特征,为深入探究京津冀地区复合污染的防控特性,本文以衡水市为例,基于2021年5月—2022年9月衡水市大气环境监测超级站的观测资料,根据污染物浓度对研究日进行分类,并重点探究不同污染类型及不同光化学水平下PM2.5与O3的关联性特征. 结果表明:①在2021年5月—2022年9月衡水市污染类型中,清洁日(低浓度PM2.5-低浓度O3)占比最大,达48.3%. ②日均PM2.5/CO(二者浓度之比,下同)的季节性变化趋势呈冬季(0.09)>春季(0.08)>秋季(0.06)>夏季(0.04)的特征,春季大气氧化性较强. ③随着光化学活性水平的提高,PM2.5浓度、PM2.5/CO以及PM2.5中二次气溶胶的比例均有所增加. ④PM2.5与O3协同增长时段主要发生在风速为1.3~1.8 m/s、温度为25.8~32.1 ℃、相对湿度为34.3%~60.5%的气象条件下,集中发生在轻度光化学活性水平(52.9%)情况下,说明低风速、高温和低湿情况有利于PM2.5-O3复合污染的发生,轻度光化学活性水平下可促进PM2.5中二次气溶胶的生成. 研究显示,O3促进PM2.5中二次组分的生成,而气象条件也是导致PM2.5-O3复合污染的重要因素之一.Abstract: In recent years, PM2.5-O3 pollution has become a major feature of air pollution in China. This study took Hengshui City as an example to investigate the prevention and control characteristics of composite pollution in the Beijing-Tianjin-Hebei Region. Based on the observation data of Hengshui Atmospheric Environment Monitoring Super Station from May 2021 to September 2022, the study days were classified according to pollutant concentration, and the correlation between PM2.5 and O3 under different pollution types and photochemical levels was explored. The results showed that: (1) From May 2021 to September 2022, Hengshui City had the largest proportion of clean days (low PM2.5-low O3) (48.3%). (2) The daily average ratio of PM2.5/CO in Hengshui showed a seasonal trend of winter (0.09) > spring (0.08) > autumn (0.06) > summer (0.04), with strong oxidation in spring. (3) PM2.5 concentration, PM2.5/CO, and the proportion of secondary aerosols in PM2.5 increased with increasing level of photochemical activity. (4) The synergistic growth periods mainly occurred when wind speed was 1.3-1.8 m/s, temperature was 25.8-32.1 ℃, and relative humidity was 34.3%-60.5%. The largest proportion of hours with synergistic growth events occurred at mild photochemical activity (52.9%). This indicated that low wind speed, high temperature, and low humidity were favorable for the occurrence of PM2.5-O3 composite pollution. The formation of secondary aerosols in PM2.5 could be enhanced at lower levels of photochemical activity. This study indicated that O3 promoted the formation of secondary components in PM2.5, and meteorological conditions were also one of the important factors leading to PM2.5-O3 composite pollution.
-
Key words:
- PM2.5 /
- O3 /
- photochemical activity /
- synergistic growth
-
表 1 日大气光化学活性水平划分标准
Table 1. Classification criteria for daily atmospheric photochemical activity levels
日大气光化学活性水平 分类依据 低光化学活性水平 O3,max<100 μg/m3 轻度光化学活动水平 100 μg/m3≤O3,max<160 μg/m3 中度光化学活动水平 160 μg/m3≤O3,max<200 μg/m3 高度光化学活性水平 O3,max≥200 μg/m3 表 2 2021年5月—2022年9月衡水市PM2.5与O3污染类型统计结果
Table 2. Statistical table of PM2.5 and O3 pollution types in Hengshui City from May 2021 to September 2022
污染类型 出现天数/d 出现频率/% 清洁日 250 48.3 污染日Ⅰ 70 13.5 污染日Ⅱ 45 8.7 污染日Ⅲ 153 29.5 表 3 2021年6月及2022年5月、6月、9月衡水市PM2.5与O3同向增长时间统计结果
Table 3. Statistical table of the same direction growth time of PM2.5 and O3 in Hengshui City in June 2021 and May, June and September 2022
日期 同向增长时段 2021年6月6日、7日、16日、30日 14:00—17:00 2022年5月2日、3日、4日、5日、6日、9日、29日、31日 07:00—11:00 2022年6月7日、8日、11日、21日 12:00—19:00 2022年9月1日、4日、18日 07:00—12:00 -
[1] XU N,ZHANG F,XUAN X.Impacts of industrial restructuring and technological progress on PM2.5 pollution:evidence from prefecture-level cities in China[J].International Journal of Environmental Research and Public Health,2021,18(10):5283. doi: 10.3390/ijerph18105283 [2] ZHAO S P,YIN D Y,YU Y,et al.PM2.5 and O3 pollution during 2015-2019 over 367 Chinese cities:spatiotemporal variations,meteorological and topographical impacts[J].Environmental Pollution,2020,264:114694. doi: 10.1016/j.envpol.2020.114694 [3] REN L H,YANG W,BAI Z P.Characteristics of major air pollutants in China[M].Singapore:Springer Singapore,2017. [4] ATKINSON R.Atmospheric chemistry of VOCs and NOx[J].Atmospheric Environment,2000,34(12/13/14):2063-2101. [5] 李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J].环境科学研究,2019,32(10):1763-1778.LI H,PENG L,BI F,et al.Strategy of coordinated control of PM2.5 and ozone in China[J].Research of Environmental Sciences,2019,32(10):1763-1778. [6] 中国环境科学学会臭氧污染控制专业委员会.中国大气臭氧污染防治蓝皮书 2020年[M].北京:科学出版社,2022. [7] 赖安琪,陈晓阳,刘一鸣,等.珠江三角洲PM2.5和O3复合污染过程的数值模拟[J].中国环境科学,2017,37(11):4022-4031. doi: 10.3969/j.issn.1000-6923.2017.11.003LAI A Q,CHEN X Y,LIU Y M,et al.Numerical simulation of a complex pollution episode with high concentrations of PM2.5 and O3 over the Pearl River Delta Region,China[J].China Environmental Science,2017,37(11):4022-4031. doi: 10.3969/j.issn.1000-6923.2017.11.003 [8] 王占山,张大伟,李云婷,等.北京市夏季不同O3和PM2.5污染状况研究[J].环境科学,2016,37(3):807-815.WANG Z S,ZHANG D W,LI Y T,et al.Different air pollution situations of O3 and PM2.5 during summer in Beijing[J].Environmental Science,2016,37(3):807-815. [9] SASSEN K.Indirect climate forcing over the western US from Asian dust storms[J].Geophysical Research Letters,2002,29(10):103-1. [10] KUMAR R,BARTH M C,MADRONICH S,et al.Effects of dust aerosols on tropospheric chemistry during a typical pre-monsoon season dust storm in northern India[J].Atmospheric Chemistry and Physics,2014,14(13):6813-6834. doi: 10.5194/acp-14-6813-2014 [11] 李红丽,王杨君,黄凌,等.中国典型城市臭氧与二次气溶胶的协同增长作用分析[J].环境科学学报,2020,40(12):4368-4379. doi: 10.13671/j.hjkxxb.2020.0217LI H L,WANG Y J,HUANG L,et al.Analysis of synergistic growth effects between ozone and secondary aerosol in typical cities in China[J].Acta Scientiae Circumstantiae,2020,40(12):4368-4379. doi: 10.13671/j.hjkxxb.2020.0217 [12] 张涵,姜华,高健,等.我国大气O3污染成因及影响因素综述[J].环境科学研究,2022,35(12):2657-2665.ZHANG H,JIANG H,GAO J,et al.Review on causes and influencing factors of O3 pollution in China[J].Research of Environmental Sciences,2022,35(12):2657-2665. [13] CHEN L,ZHU J,LIAO H,et al.Meteorological influences on PM2.5 and O3 trends and associated health burden since China′s clean air actions[J].Science of the Total Environment,2020,744:140837. doi: 10.1016/j.scitotenv.2020.140837 [14] DUAN W J,WANG X Q,CHENG S Y,et al.Influencing factors of PM2.5 and O3 from 2016 to 2020 based on DLNM and WRF-CMAQ[J].Environmental Pollution,2021,285:117512. doi: 10.1016/j.envpol.2021.117512 [15] YAN D,LEI Y L,SHI Y K,et al.Evolution of the spatiotemporal pattern of PM2.5 concentrations in China:a case study from the Beijing-Tianjin-Hebei Region[J].Atmospheric Environment,2018,183:225-233. doi: 10.1016/j.atmosenv.2018.03.041 [16] QIN Y,LI J Y,GONG K J,et al.Double high pollution events in the Yangtze River Delta from 2015 to 2019:characteristics,trends,and meteorological situations[J].Science of the Total Environment,2021,792:148349. doi: 10.1016/j.scitotenv.2021.148349 [17] 余益军,孟晓艳,王振,等.京津冀地区城市臭氧污染趋势及原因探讨[J].环境科学,2020,41(1):106-114. doi: 10.13227/j.hjkx.201905222YU Y J,MENG X Y,WANG Z,et al.Driving factors of the significant increase in surface ozone in the Beijing-Tianjin-Hebei Region,China,during 2013-2018[J].Environmental Science,2020,41(1):106-114. doi: 10.13227/j.hjkx.201905222 [18] DAI H B,ZHU J,LIAO H,et al.Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013-2019:spatiotemporal distribution and meteorological conditions[J].Atmospheric Research,2021,249:105363. doi: 10.1016/j.atmosres.2020.105363 [19] XING J A,WANG J D,MATHUR R,et al.Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates[J].Atmospheric Chemistry and Physics,2017,17(16):9869-9883. doi: 10.5194/acp-17-9869-2017 [20] QU Y W,WANG T J,CAI Y F,et al.Influence of atmospheric particulate matter on ozone in Nanjing,China:observational study and mechanistic analysis[J].Advances in Atmospheric Sciences,2018,35(11):1381-1395. doi: 10.1007/s00376-018-8027-4 [21] XIA H L,HUANG D,BAO F X,et al.Photochemical aging of Beijing urban PM2.5:production of oxygenated volatile organic compounds[J].Science of the Total Environment,2020,743:140751. doi: 10.1016/j.scitotenv.2020.140751 [22] XING J A,MATHUR R,PLEIM J,et al.Air pollution and climate response to aerosol direct radiative effects:a modeling study of decadal trends across the Northern Hemisphere[J].Journal of Geophysical Research:Atmospheres,2015,120(23):12221-12236. [23] CARTER E,NORRIS C,DIONISIO K L,et al.Assessing exposure to household air pollution:a systematic review and pooled analysis of carbon monoxide as a surrogate measure of particulate matter[J].Environmental Health Perspectives,2017,125(7):076002. doi: 10.1289/EHP767 [24] CHANG S C,LEE C T.Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003[J].Atmospheric Environment,2007,41(19):4002-4017. doi: 10.1016/j.atmosenv.2007.01.040 [25] JIA M W,ZHAO T L,CHENG X H,et al.Inverse relations of PM2.5 and O3 in air compound pollution between cold and hot seasons over an urban area of East China[J].Atmosphere,2017,8(3):59. doi: 10.3390/atmos8030059 [26] 王占山,李云婷,陈添,等.北京城区臭氧日变化特征及与前体物的相关性分析[J].中国环境科学,2014,34(12):3001-3008.WANG Z S,LI Y T,CHEN T,et al.Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing[J].China Environmental Science,2014,34(12):3001-3008. [27] LIU Z,ROY S S.Spatial patterns of seasonal level diurnal variations of ozone and respirable suspended particulates in Hong Kong[J].The Professional Geographer,2015,67(1):17-27. doi: 10.1080/00330124.2014.886922 [28] LU X,ZHANG S J,XING J,et al.Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era[J].Engineering,2020,6(12):1423-1431. doi: 10.1016/j.eng.2020.03.014 [29] 何国文,邓涛,欧阳珊珊,等.广州地区秋季PM2.5和臭氧复合污染的观测研究[J].环境科学学报,2022,42(6):250-259.HE G W,DENG T,OUYANG S S,et al.Observation studies on the PM2.5 and O3 complex episodes during autumn in Guangzhou[J].Acta Scientiae Circumstantiae,2022,42(6):250-259. [30] 宋小涵,燕丽,刘伟,等.2015—2021年京津冀及周边地区PM2.5和臭氧复合污染时空特征分析[J].环境科学,2023,44(4):1841-1851.SONG X H,YAN L,LIU W,et al.Spatiotemporal distribution characteristics of co-pollution of PM2.5 and ozone over BTH with surrounding area from 2015 to 2021[J].Environmental Science,2023,44(4):1841-1851. [31] 李苹,余晔,赵素平,等.2015—2017年中国近地面O3污染状况与影响因素分析[J].高原气象,2019,38(6):1344-1353.LI P,YU Y,ZHAO S P,et al.Situation and influencing factors of ground-level ozone pollution in China from 2015 to 2017[J].Plateau Meteorology,2019,38(6):1344-1353. [32] 刘淼晗,于宸涛,房祥玉,等.2014—2020年河南省PM2.5-O3复合污染特征及气象成因分析[J].环境科学研究,2023,36(2):285-293.LIU M H,YU C T,FANG X Y,et al.Analysis of PM2.5-O3 compound pollution characteristics and meteorological causes in Henan Province from 2014 to 2020[J].Research of Environmental Sciences,2023,36(2):285-293. [33] WANG D F,ZHOU B,FU Q Y,et al.Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer:observations at a rural site in eastern Yangtze River Delta of China[J].Science of the Total Environment,2016,571:1454-1466. doi: 10.1016/j.scitotenv.2016.06.212 [34] 刘聪.京津冀大气污染协同治理下的衡水雾霾治理政策分析[D].秦皇岛:燕山大学,2017. [35] WANG F J,CHAMBERS S D,ZHANG Z Y,et al.Quantifying stability influences on air pollution in Lanzhou,China,using a radon-based ‘stability monitor’:seasonality and extreme events[J].Atmospheric Environment,2016,145:376-391. doi: 10.1016/j.atmosenv.2016.09.014 [36] JAVED Z,BILAL M,QIU Z,et al.Spatiotemporal characterization of aerosols and trace gases over the Yangtze River Delta Region,China:impact of trans-boundary pollution and meteorology[J].Environmental Sciences Europe,2022,34(1):86. doi: 10.1186/s12302-022-00668-2 [37] 孙金金,谢晓栋,秦墨梅,等.不同时间尺度上PM2.5与臭氧协同关系及其影响因素分析[J].科学通报,2022,67(18):2018-2028. doi: 10.1360/TB-2021-0742SUN J J,XIE X D,QIN M M,et al.Analysis of coordinated relationship between PM2.5 and ozone and its affecting factors on different timescales[J].Chinese Science Bulletin,2022,67(18):2018-2028. doi: 10.1360/TB-2021-0742 -