Environmental Pollution Risks Related to Managed Aquifer Recharge: A Review
-
摘要: 地下水回补是缓解水资源危机保障水资源利用弹性的有效方式. 科学认识多水源多路径回补潜在的环境污染风险是地下水安全可持续回补的关键. 地下水回补过程对污染物具有降解作用,但也存在直接与次生污染的双重风险. 直接污染来源于回补水及回补场地地表污染源,主要污染组分为氮磷营养盐、有机碳、盐分、有机污染物/新污染物、病原菌等,次生污染一是来源于回补后含水层氧化还原、溶解沉淀、吸附解吸等条件变化导致沉积物矿物背景组分的释放,二是水位抬升导致包气带残留污染的淋溶释放,常见的污染指标有As、Mn、硝酸盐等. 对于回补水质标准的限定,以及地表污染源的管理是防范直接污染的主要措施,而对于水源的预处理,场地地球化学条件与水源组分的合理匹配,回补水位阈值的科学调控是防止地下水次生污染的关键. 未来应进一步增强新污染物及非常规毒理性组分在入渗过程中的迁移转化特征研究、含水层矿物成分与回补水源耦合作用的长期效应研究以及多组分协同去除效应的优化回补工艺等研究,以保障不同回补条件下的地下水环境安全.Abstract: Managed Aquifer Recharge (MAR) is an effective way to alleviate the water resource crisis and is of great significance for improving the flexibility of water use. A scientific understanding of the environmental risks that multi-water sources and multi-pathways of MAR can bring is the key to ensure the sustainable MAR. Managed Aquifer Recharge has a significant degradation effect on pollutants, but it also has dual risks of direct and secondary pollution. The direct pollution mainly comes from the recharge water and the surface pollution sources of the recharge sites. The main pollution components are nitrogen and phosphorus nutrients, organic carbon, salt, organic pollutants/emerging pollutants, pathogenic bacteria, etc. The first source of secondary pollution is the release of background components of aquifer sediments due to changes in conditions such as redox, dissolution/precipitation, and adsorption/desorption after recharge. The other is the leaching of residual pollution in the vadose zone caused by the rising groundwater table. The common pollution indicators are As, Mn, nitrate. The main measures to prevent direct pollution are the limitation of water quality standards for MAR and the management of surface pollution sources. For the pretreatment of water source, the reasonable matching of site geochemical conditions and water source components, and the scientific regulation of groundwater table threshold are the keys to prevent secondary pollution of MAR. In future research, it is necessary to further enhance the research on the migration and transformation mechanism of emerging pollutants and unconventional toxic components during recharge process, the long-term coupling effect of mineral components in aquifers and recharge water sources, and the optimization of recharge processes for multi component synergistic removal effects in order to ensure the safety of groundwater environment under different recharge conditions.
-
Key words:
- managed aquifer recharge /
- emerging pollutants /
- secondary pollution /
- redox condition /
- risk assessment
-
表 1 地下水回补过程中主要污染组分特征
Table 1. The Occurrence of Main Groundwater Pollutants during MAR
污染组分类型 主要污染方式 国内外案例 盐分 直接/次生污染型 再生水回补区域易出现,再生水盐分输入地下水中[4];中国石家庄滹沱河回补区由于河道残留垃圾等导致地下水出现盐分污染[25];易出现在干旱半干旱地区,回补后地下水位抬升过高会导致蒸发浓缩作用增强,出现盐渍化现象 N、P营养元素及有机碳 直接/次生污染型 中国北京潮白河河道回补区氮污染[26];美国科罗拉多州河道回补场地人为源磷污染[7];澳大利亚珀斯市深度处理再生水回补场地含水层沉积物磷释放污染[27] 重(类)金属组分(砷、铁和
锰、其他微量元素)次生污染型 美国佛罗里达州再生水回补场地As释放[13,28];以色列、荷兰、加拿大等国家回补场地Mn释放现象[17,29-30] 氟 次生污染型 英国韦塞克斯回补工程F释放污染[31];澳大利亚珀斯市深度处理再生水回补场地氟释放污染[27,32] 有机污染物(微量有机污染源、抗生素、个人护理用品等) 直接污染型 我国15个再生水回补场地,地下水中共检出20种抗生素及13种抗性基因[33];西澳大利亚地区,回补地下水发现多种抗生素[34];荷兰Lek河RBF回补,地下水15种有机污染物长期存在[35] 病原微生物 直接污染型 欧洲3个再生水利用场地(西班牙Sabadell市、意大利Nardo镇、比利时Veurne地区),地下水中贾第鞭毛虫、隐孢子虫等病原微生物具有高检出率[36] 注:直接污染型表示回补水源及回补场地来源的地表污染物;次生污染型,一是来源于含水层沉积物中的微量元素组分,多为重(类)金属类、氟等,回补后地下氧化还原、溶解平衡、蒸发浓缩等环境条件改变导致相关组分释放进入地下水或在地下水中富集;二是来源于包气带中残留的污染物,在回补水入渗包气带或地下水位上升后被淋溶或浸泡释放. -
[1] 梁藉,郑凡东,刘立才,等.北京市再生水回灌必要性及关键问题研究[J].北京水务,2011(1):26-28. doi: 10.3969/j.issn.1673-4637.2011.01.008LIANG J,ZHENG F D,LIU L C,et al.Study on necessity and key problems of groundwater recharge with reclaimed water in Beijing[J].Beijing Water,2011(1):26-28. doi: 10.3969/j.issn.1673-4637.2011.01.008 [2] 蓝楠.我国地下水资源可持续利用的对策分析[J].中国环保产业,2008(7):38-42.LAN N.Study on countermeasures for sustainable utilization of underground drinking water in China[J].China Environmental Protection Industry,2008(7):38-42. [3] 王鑫,李炳华,潘兴瑶,等.南水北调水回补对北京密怀顺河道回补区地下水水质影响[J].环境科学研究,2022,35(8):1935-1944.WANG X,LI B H,PAN X Y,et al.Influence of south-to-north water diversion project on groundwater quality in Mi-Huai-Shun river replenishment area of Beijing[J].Research of Environmental Sciences,2022,35(8):1935-1944. [4] 陈卫平,吕斯丹,王美娥,等.再生水回灌对地下水水质影响研究进展[J].应用生态学报,2013,24(5):1253-1262.CHEN W P,LV S D,WANG M E,et al.Effects of reclaimed water recharge on groundwater quality:a review[J].Chinese Journal of Applied Ecology,2013,24(5):1253-1262. [5] ALOTAIBI M D,PATTERSON B M,MCKINLEY A J,et al.Fate of benzotriazole and 5-methylbenzotriazole in recycled water recharged into an anaerobic aquifer:column studies[J].Water Research,2015,70:184-195. doi: 10.1016/j.watres.2014.11.040 [6] VALHONDO C,CARRERA J,AYORA C,et al.Characterizing redox conditions and monitoring attenuation of selected pharmaceuticals during artificial recharge through a reactive layer[J].Science of the Total Environment,2015,512/513:240-250. doi: 10.1016/j.scitotenv.2015.01.030 [7] REGNERY J,BARRINGER J,WING A D,et al.Start-up performance of a full-scale riverbank filtration site regarding removal of DOC,nutrients,and trace organic chemicals[J].Chemosphere,2015,127:136-142. doi: 10.1016/j.chemosphere.2014.12.076 [8] MA Y P,LI M,WU M M,et al.Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J].Science of the Total Environment,2015,518/519:498-506. doi: 10.1016/j.scitotenv.2015.02.100 [9] IM H,YEO I,MAENG S K,et al.Simultaneous attenuation of pharmaceuticals,organic matter,and nutrients in wastewater effluent through managed aquifer recharge:batch and column studies[J].Chemosphere,2016,143:135-141. doi: 10.1016/j.chemosphere.2015.10.104 [10] 王会霞,史浙明,姜永海,等.地下水污染识别与溯源指示因子研究进展[J].环境科学研究,2021,34(8):1886-1898.WANG H X,SHI Z M,JIANG Y H,et al.Research progress on indicator of groundwater pollution identification and traceability[J].Research of Environmental Sciences,2021,34(8):1886-1898. [11] 侯培强,任玉芬,王效科,等.北京市城市降雨径流水质评价研究[J].环境科学,2012,33(1):71-75.HOU P Q,REN Y F,WANG X K,et al.Research on evaluation of water quality of Beijing urban stormwater runoff[J].Environmental Science,2012,33(1):71-75. [12] 张赫轩.城市雨洪水地下回灌过程中Fe(Ⅲ)堵塞规律的试验研究[D].长春:吉林大学,2017. [13] JONES G W,PICHLER T.Relationship between pyrite stability and arsenic mobility during aquifer storage and recovery in southwest central Florida[J].Environmental Science & Technology,2007,41(3):723-730. [14] MIN L L,LIU M Y,WU L,et al.Groundwater storage recovery raises the risk of nitrate pollution[J].Environmental Science & Technology,2022,56(1):8-9. [15] NRMMC,EPHC and NHMRC.Australian Guidelines for water recycling,managing health and environmental risks (Phase 2):managed aquifer recharge [S].Canberra:Natural Resource Management Ministerial Council,Environment Protection and Heritage Council National Health and Medical Research Council,2009. [16] DILLON P,PAGE D,VANDERZALM J,et al.Lessons from 10 years of experience with Australia ′s risk-based guidelines for managed aquifer recharge[J].Water,2020,12(2):537. doi: 10.3390/w12020537 [17] FARNSWORTH C E,HERING J G.Inorganic geochemistry and redox dynamics in bank filtration settings[J].Environmental Science & Technology,2011,45(12):5079-5087. [18] FAKHREDDINE S,PROMMER H,SCANLON B R,et al.Mobilization of arsenic and other naturally occurring contaminants during managed aquifer recharge:a critical review[J].Environmental Science & Technology,2021,55(4):2208-2223. [19] PROMMER H,SUN J,HELM L,et al.Deoxygenation prevents arsenic mobilization during deepwell injection into sulfide-bearing aquifers[J].Environmental Science & Technology,2018,52(23):13801-13810. [20] GOREN O,GAVRIELI I,BURG A,et al.Cation exchange and CaCO3 dissolution during artificial recharge of effluent to a calcareous sandstone aquifer[J].Journal of Hydrology,2011,400(1/2):165-175. [21] VENGOSH A,KEREN R.Chemical modifications of groundwater contaminated by recharge of treated sewage effluent[J].Journal of Contaminant Hydrology,1996,23(4):347-360. doi: 10.1016/0169-7722(96)00019-8 [22] KARLSEN R H,SMITS F J C,STUYFZAND P J,et al.A post audit and inverse modeling in reactive transport:50 years of artificial recharge in the Amsterdam Water Supply Dunes[J].Journal of Hydrology,2012,454/455:7-25. doi: 10.1016/j.jhydrol.2012.05.019 [23] RONEN-ELIRAZ G,RUSSAK A,NITZAN I,et al.Investigating geochemical aspects of managed aquifer recharge by column experiments with alternating desalinated water and groundwater[J].Science of the Total Environment,2017,574:1174-1181. doi: 10.1016/j.scitotenv.2016.09.075 [24] JIA Y F,XI B D,JIANG Y H,et al.Distribution,formation and human-induced evolution of geogenic contaminated groundwater in China:a review[J].Science of the Total Environment,2018,643:967-993. doi: 10.1016/j.scitotenv.2018.06.201 [25] 田夏,孟素花,崔向向,等.滹沱河超采区地下水回补的水化学效应研究[J].环境科学研究,2021,34(3):629-636.TIAN X,MENG S H,CUI X X,et al.Hydrochemical effect of groundwater recharge in over-exploited area of Hutuo River Basin[J].Research of Environmental Sciences,2021,34(3):629-636. [26] 夏绮文,李炳华,何江涛,等.潮白河再生水生态补给河道区浅层地下水氮转化[J].环境科学研究,2021,34(3):618-628.XIA Q W,LI B H,HE J T,et al.Nitrogen transformation of shallow groundwater in river area of ecological recharge of reclaimed water in Chaobai River[J].Research of Environmental Sciences,2021,34(3):618-628. [27] DAVID S,JING S,JAMES J,et al.Model-based analysis of reactive transport processes governing fluoride and phosphate release and attenuation during managed aquifer recharge[J].Environmental Science & Technology,2020,54(5):2800-2811. [28] JIN J,ZIMMERMAN A R,NORTON S B,et al.Arsenic release from Floridan Aquifer rock during incubations simulating aquifer storage and recovery operations[J].Science of the Total Environment,2016,551/552:238-245. doi: 10.1016/j.scitotenv.2016.02.028 [29] de VET W W J M,van GENUCHTEN C C A,van LOOSDRECHT M C M,et al.Water quality and treatment of river bank filtrate[J].Drinking Water Engineering and Science,2010,3(1):79-90. doi: 10.5194/dwes-3-79-2010 [30] THOMAS N E,KAN K T,BRAY D I,et al.Temporal changes in manganèse concentrations in water from the Fredericton aquifer,new Brunswick[J].Groundwater,1994,32(4):650-656. doi: 10.1111/j.1745-6584.1994.tb00901.x [31] GAUS I,SHAND P,GALE I N,et al.Geochemical modelling of fluoride concentration changes during aquifer storage and recovery (ASR) in the Chalk aquifer in Wessex,England[J].Quarterly Journal of Engineering Geology and Hydrogeology,2002,35(2):203-208. doi: 10.1144/1470-9236/2001-52 [32] SCHAFER D,SUN J,JAMIESON J,et al.Fluoride release from carbonate-rich fluorapatite during managed aquifer recharge:model-based development of mitigation strategies[J].Water Research,2021,193:116880. doi: 10.1016/j.watres.2021.116880 [33] 马业萍.再生水入渗过程抗生素及抗性基因的分布及关联性分析[D].北京:清华大学,2015. [34] BEKELE E,TOZE S,PATTERSON B,et al.Managed aquifer recharge of treated wastewater:water quality changes resulting from infiltration through the vadose zone[J].Water Research,2011,45(17):5764-5772. doi: 10.1016/j.watres.2011.08.058 [35] HAMANN E,STUYFZAND P J,GRESKOWIAK J,et al.The fate of organic micropollutants during long-term/long-distance river bank filtration[J].Science of the Total Environment,2016,545/546:629-640. doi: 10.1016/j.scitotenv.2015.12.057 [36] LEVANTESI C,La MANTIA R,MASCIOPINTO C,et al.Quantification of pathogenic microorganisms and microbial indicators in three wastewater reclamation and managed aquifer recharge facilities in Europe[J].Science of the Total Environment,2010,408(21):4923-4930. doi: 10.1016/j.scitotenv.2010.07.042 [37] 贾永锋,郭华明,魏亮.基于模型模拟法的地下水氨氮-硝氮防污性能评价:以北京市昌平区为例[J].现代地质,2015,29(2):316-323. doi: 10.3969/j.issn.1000-8527.2015.02.014JIA Y F,GUO H M,WEI L.Groundwater vulnerability to ammonia and nitrate based on modeling simulation method:a case study in Changping district of Beijing[J].Geoscience,2015,29(2):316-323. doi: 10.3969/j.issn.1000-8527.2015.02.014 [38] CRITES R W.Micropollutant removal in rapid infiltration[M].Amsterdam:Elsevier,1985:579-608. [39] ABEL C D T,SHARMA S K,MERSHA S A,et al.Influence of intermittent infiltration of primary effluent on removal of suspended solids,bulk organic matter,nitrogen and pathogens indicators in a simulated managed aquifer recharge system[J].Ecological Engineering,2014,64:100-107. doi: 10.1016/j.ecoleng.2013.12.045 [40] VANDERZALM J L,Le GALLa SALLE C,DILLON P J.Fate of organic matter during aquifer storage and recovery (ASR) of reclaimed water in a carbonate aquifer[J].Applied Geochemistry,2006,21(7):1204-1215. doi: 10.1016/j.apgeochem.2006.02.022 [41] DOUSSAN C,LEDOUX E,DETAY M.River-groundwater exchanges,bank filtration,and groundwater quality:ammonium behavior[J].Journal of Environmental Quality,1998,27(6):1418-1427. [42] CÁÑEZ T T,GUO B,McINTOSH J C,et al.Perfluoroalkyl and polyfluoroalkyl substances (PFAS) in groundwater at a reclaimed water recharge facility[J].Science of the Total Environment,2021,791:147906. doi: 10.1016/j.scitotenv.2021.147906 [43] LI D,ALIDINA M,DREWES J E.Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems[J].Applied Microbiology and Biotechnology,2014,98(12):5747-5756. doi: 10.1007/s00253-014-5677-8 [44] DREWES J E.Ground water replenishment with recycled water-water quality improvements during managed aquifer recharge[J].Groundwater,2009,47(4):502-505. doi: 10.1111/j.1745-6584.2009.00587_5.x [45] MAENG S K,SHARMA S K,LEKKERKERKER-TEUNISSEN K,et al.Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge:a review[J].Water Research,2011,45(10):3015-3033. doi: 10.1016/j.watres.2011.02.017 [46] PAVELIC P,NICHOLSON B C,DILLON P J,et al.Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water[J].Journal of Contaminant Hydrology,2005,77(1/2):119-141. [47] SERRA-ROIG M P,JURADO A,DÍAZ-CRUZ M S,et al.Occurrence,fate and risk assessment of personal care products in river-groundwater interface[J].Science of the Total Environment,2016,568:829-837. doi: 10.1016/j.scitotenv.2016.06.006 [48] 李建忠.典型内分泌干扰物在土壤中迁移转化规律研究[D].北京:清华大学,2013. [49] 陈卫平,彭程伟,杨阳,等.北京市地下水中典型抗生素分布特征与潜在风险[J].环境科学,2017,38(12):5074-5080.CHEN W P,PENG C W,YANG Y,et al.Distribution characteristics and risk analysis of antibiotic in the groundwater in Beijing[J].Environmental Science,2017,38(12):5074-5080. [50] CLARA M,STRENN B,KREUZINGER N.Carbamazepine as a possible anthropogenic marker in the aquatic environment:investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration[J].Water Research,2004,38(4):947-954. doi: 10.1016/j.watres.2003.10.058 [51] BRADLEY P M,BARBER L B,DURIS J W,et al.Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream[J].Environmental Pollution,2014,193:173-180. doi: 10.1016/j.envpol.2014.06.028 [52] MA Y J,MODRZYNSKI J J,YANG Y X,et al.Redox-dependent biotransformation of sulfonamide antibiotics exceeds sorption and mineralization:evidence from incubation of sediments from a reclaimed water-affected river[J].Water Research,2021,205:117616. doi: 10.1016/j.watres.2021.117616 [53] TOZE S,BEKELE E,PAGE D,et al.Use of static quantitative microbial risk assessment to determine pathogen risks in an unconfined carbonate aquifer used for managed aquifer recharge[J].Water Research,2010,44(4):1038-1049. doi: 10.1016/j.watres.2009.08.028 [54] ASCOTT M J,GOODDY D C,WANG L,et al.Global patterns of nitrate storage in the vadose zone[J].Nature Communications,2017,8:1416. doi: 10.1038/s41467-017-01321-w [55] PENSKY J,FISHER A T,GORSKI G,et al.Linking nitrate removal,carbon cycling,and mobilization of geogenic trace metals during infiltration for managed recharge[J].Water Research,2023,239:120045. doi: 10.1016/j.watres.2023.120045 [56] NEIL C W,YANG Y J,JUN Y S.Arsenic mobilization and attenuation by mineral-water interactions:implications for managed aquifer recharge[J].Journal of Environmental Monitoring,2012,14(7):1772-1788. doi: 10.1039/c2em30323j [57] 贾永锋,郭华明.高砷地下水研究的热点及发展趋势[J].地球科学进展,2013,28(1):51-61. doi: 10.11867/j.issn.1001-8166.2013.01.0051JIA Y F,GUO H M.Hot topics and trends in the study of high arsenic groundwater[J].Advances in Earth Science,2013,28(1):51-61. doi: 10.11867/j.issn.1001-8166.2013.01.0051 [58] JIA Y F,GUO H M,JIANG Y X,et al.Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin,Inner Mongolia[J].Journal of Hydrology,2014,518:410-420. doi: 10.1016/j.jhydrol.2014.02.004 [59] JIA Y F,GUO H M,XI B D,et al.Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin,Inner Mongolia[J].Science of the Total Environment,2017,601/602:691-702. doi: 10.1016/j.scitotenv.2017.05.196 [60] FAKHREDDINE S,DITTMAR J,PHIPPS D,et al.Geochemical triggers of arsenic mobilization during managed aquifer recharge[J].Environmental Science & Technology,2015,49(13):7802-7809. [61] NRMMC,EPHC.Australian guidelines for water recycling:managing health and environmental risks (phase 1).national water quality management strategy 21[S].Canberra:Natural Resource Management Ministerial Council,Environment Protection and Heritage Council,2006. [62] WASSERMAN G A,LIU X H,PARVEZ F,et al.Water arsenic exposure and children ′s intellectual function in Araihazar,Bangladesh[J].Environmental Health Perspectives,2004,112(13):1329-1333. doi: 10.1289/ehp.6964 [63] von GUNTEN H R,KULL T P.Infiltration of inorganic compounds from the Glatt River,Switzerland,into a groundwater aquifer[J].Water,Air,and Soil Pollution,1986,29(3):333-346. doi: 10.1007/BF00158764 [64] ZHAO M,JIANG Y H,JIA Y F,et al.Anthropogenic perturbation enhances the release of geogenic Mn to groundwater:evidence from hydrogeochemical characteristics[J].Science of the Total Environment,2023,891:164450. doi: 10.1016/j.scitotenv.2023.164450 [65] FENG F,JIANG Y H,JIA Y F,et al.Risks of nutrients and metal(loid)s mobilization triggered by groundwater recharge containing reactive organic matter[J].Journal of Hydrology,2023,623:129780. doi: 10.1016/j.jhydrol.2023.129780 [66] von GUNTEN H R,KARAMETAXAS G,KRÄHENBÜHL U,et al.Seasonal biogeochemical cycles in riverborne groundwater[J].Geochimica et Cosmochimica Acta,1991,55(12):3597-3609. doi: 10.1016/0016-7037(91)90058-D [67] BOURG A C M,BERTIN C.Biogeochemical processes during the infiltration of river water into an alluvial aquifer[J].Environmental Science & Technology,1993,27(4):661-666. [68] ARTHUR J D,A A DABOUS,J B COWART.Mobilization of arsenic and other trace elements during aquifer storage and recovery,southwest Florida [C].Sacramento:U.S. Geological Survey Artificial Recharge Workshop Proceedings,2002. [69] ANTONIOU E A,van BREUKELEN B M,PUTTERS B,et al.Hydrogeochemical patterns,processes and mass transfers during aquifer storage and recovery (ASR) in an anoxic sandy aquifer[J].Applied Geochemistry,2012,27(12):2435-2452. doi: 10.1016/j.apgeochem.2012.09.006 [70] JOHNSON J S,BAKER L A,FOX P.Geochemical transformations during artificial groundwater recharge:soil-water interactions of inorganic constituents[J].Water Research,1999,33(1):196-206. doi: 10.1016/S0043-1354(98)00195-X [71] SUN J,DONN M,GERBER P,et al.Assessing and managing large-scale geochemical impacts from groundwater replenishment with highly treated reclaimed wastewater[J].Water Resources Research,2020.doi: 10.1029/2020WR028066. [72] 冯帆,姜永海,廉新颖,等.地下水回补引发含水层氟释放次生风险的模拟研究[J].环境科学研究,2020,33(6):1440-1450.FENG F,JIANG Y H,LIAN X Y,et al.Simulation study on secondary risk of aquifer fluoride release induced by groundwater recharge[J].Research of Environmental Sciences,2020,33(6):1440-1450. [73] 沈彦俊,闵雷雷,吴林,等.华北山前平原农田关键带观测研究平台(栾城关键带观测平台)[J].中国科学院院刊,2021,36(4):502-511.SHEN Y J,MIN L L,WU L,et al.Functions and applications of critical zone observatory of Luancheng agro-ecosystem experimental station,Chinese Academy of Sciences (Luancheng critical zone observatory)[J].Bulletin of Chinese Academy of Sciences,2021,36(4):502-511. [74] WANG S Q,WEI S C,LIANG H Y,et al.Nitrogen stock and leaching rates in a thick vadose zone below areas of long-term nitrogen fertilizer application in the North China Plain:a future groundwater quality threat[J].Journal of Hydrology,2019,576:28-40. doi: 10.1016/j.jhydrol.2019.06.012 [75] 魏东斌,魏晓霞.再生水回灌地下的水质安全控制指标体系探讨[J].中国给水排水,2010,26(16):23-26.WEI D B,WEI X X.Discussion on index system for controlling quality of reclaimed water for groundwater recharge[J].China Water & Wastewater,2010,26(16):23-26. [76] 李红超,马剑飞,罗飞,等.再生水地表入渗场地适宜性评价研究进展[J].人民黄河,2014,36(4):53-55. doi: 10.3969/j.issn.1000-1379.2014.04.017LI H C,MA J F,LUO F,et al.Research progress on site selection of reclaimed water infiltration[J].Yellow River,2014,36(4):53-55. doi: 10.3969/j.issn.1000-1379.2014.04.017 [77] 朱玉晨,李亚松,刘雅慈,等.基于改进DPSIR模型的京津冀地区优先回补地下水水源地筛选方法[J].环境科学研究,2020,33(6):1357-1365.ZHU Y C,LI Y S,LIU Y C,et al.Screening method of preferred groundwater recharge source fields in the Beijing-Tianjin-Hebei Region based on improved DPSIR model[J].Research of Environmental Sciences,2020,33(6):1357-1365. [78] 王丽娜.城市污水再生用于地下水回灌及健康风险评价[D].哈尔滨:哈尔滨工业大学,2006. -