留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝藻生长与衰亡对太湖水体氮素迁移转化的影响

李昌杰 许海 詹旭 朱广伟 肖曼 朱梦圆 邹伟

李昌杰, 许海, 詹旭, 朱广伟, 肖曼, 朱梦圆, 邹伟. 蓝藻生长与衰亡对太湖水体氮素迁移转化的影响[J]. 环境科学研究, 2023, 36(9): 1684-1690. doi: 10.13198/j.issn.1001-6929.2023.07.02
引用本文: 李昌杰, 许海, 詹旭, 朱广伟, 肖曼, 朱梦圆, 邹伟. 蓝藻生长与衰亡对太湖水体氮素迁移转化的影响[J]. 环境科学研究, 2023, 36(9): 1684-1690. doi: 10.13198/j.issn.1001-6929.2023.07.02
LI Changjie, XU Hai, ZHAN Xu, ZHU Guangwei, XIAO Man, ZHU Mengyuan, ZOU Wei. Effects of Cyanobacterial Growth and Decay on Nitrogen Transformation in Lake Taihu[J]. Research of Environmental Sciences, 2023, 36(9): 1684-1690. doi: 10.13198/j.issn.1001-6929.2023.07.02
Citation: LI Changjie, XU Hai, ZHAN Xu, ZHU Guangwei, XIAO Man, ZHU Mengyuan, ZOU Wei. Effects of Cyanobacterial Growth and Decay on Nitrogen Transformation in Lake Taihu[J]. Research of Environmental Sciences, 2023, 36(9): 1684-1690. doi: 10.13198/j.issn.1001-6929.2023.07.02

蓝藻生长与衰亡对太湖水体氮素迁移转化的影响

doi: 10.13198/j.issn.1001-6929.2023.07.02
基金项目: 国家自然科学基金项目(No.42271126);江苏省科技厅项目(No.BK20220041);中国科学院南京地理与湖泊研究所自主部署科研项目(No.NIGLAS2022GS03)
详细信息
    作者简介:

    李昌杰(1997-),男,山东临沂人,1731553321@qq.com

    通讯作者:

    许海(1978-),男,安徽蚌埠人,研究员,博士,主要从事湖库碳氮循环研究,hxu@niglas.ac.cn

  • 中图分类号: X524

Effects of Cyanobacterial Growth and Decay on Nitrogen Transformation in Lake Taihu

Funds: National Natural Science Foundation of China (No.42271126); Foundation of Science and Technology Office of Jiangsu, China (No.BK20220041); Self-Deployed Research Projects of Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences (No.NIGLAS2022GS03)
  • 摘要: 氮是控制蓝藻生长和水华形成的关键元素之一,反之蓝藻水华也会对氮的浓度变化和形态转化产生影响. 通过采集太湖竺山湾蓝藻、沉积物和水样,设立湖水对照组(A0)、湖水加藻避光培养处理组(A1)、泥柱避光培养处理组(A2)、泥柱加藻避光培养处理组(A3)、湖水加藻光照培养处理组(A4)、泥柱加藻光照培养处理组(A5)进行室内培养试验,探究在蓝藻生长和衰亡的不同时期中氮的转化过程. 结果表明:①蓝藻生长会大量吸收水体中的溶解态氮,最终A4和A5处理组中DTN浓度分别降低46.4%和60.7%、NO3-N浓度分别降低61.7%和80.6%. ②蓝藻的衰亡会降低水体DO浓度,加速底泥氮素脱除,试验结束时A0和A1处理组中NO3-N浓度基本无变化,A2和A3处理组中NO3-N浓度分别降低40.8%和56.6%. ③蓝藻衰亡时会释放大量NH4+-N,大幅提高水体中DTN浓度,并因试验期间的低溶氧条件使得NH4+-N无法转换成硝酸盐,抑制氮素的脱除,试验结束时DTN浓度分别升高77.6%和59.2%. 研究显示,蓝藻的生长可以通过吸收水体中的NO3-N来降低反硝化作用的底物浓度,从而会在短期内降低反硝化脱氮效率;而蓝藻水华的衰亡则会促进沉积物的反硝化脱氮作用,但当NO3-N被完全脱除后,水华降解导致的低DO浓度会阻碍硝化作用的发生,短期内打破耦合硝化-反硝化的脱氮过程. 对于浅水湖泊而言,频繁的风浪扰动作用,会使水体处于厌氧-耗氧交替过程,强化耦合硝化-反硝化过程. 因此,尽管蓝藻水华的大量生长会与反硝化竞争NO3-N,短期内抑制湖泊脱氮过程,但从蓝藻生长-衰亡的整个生命周期来看,蓝藻水华的发生则会促进湖泊氮素的脱除.

     

  • 图  1  模拟试验系统设计示意

    Figure  1.  Design of simulation experiment system

    图  2  各组DO浓度随时间的变化

    Figure  2.  The change of the DO concentration in each group with time

    图  3  各组DTN浓度随时间的变化

    Figure  3.  The change of the DTN concentration in each group with time

    图  4  各组NO3-N浓度随时间的变化

    Figure  4.  The change of the NO3-N concentration in each group with time

    图  5  各组NO2-N浓度随时间的变化

    Figure  5.  The change of the NO2-N concentration in each group with time

    图  6  各组NH4+-N浓度随时间的变化

    Figure  6.  The change of the NH4+-N concentration in each group with time

    图  7  不同形态氮浓度随时间的变化

    Figure  7.  The change of concentration of different nitrogen forms with time

  • [1] KUYPERS M M M,MARCHANT H K,KARTAL B.The microbial nitrogen-cycling network[J].Nature Reviews Microbiology,2018,16(5):263-276. doi: 10.1038/nrmicro.2018.9
    [2] LI S,LIU C,SUN P,et al.Response of cyanobacterial bloom risk to nitrogen and phosphorus concentrations in large shallow lakes determined through geographical detector:a case study of Taihu Lake,China[J].Science of the Total Environment,2022,816:151617. doi: 10.1016/j.scitotenv.2021.151617
    [3] YU C Q,HUANG X,CHEN H,et al.Managing nitrogen to restore water quality in China[J].Nature,2019,567(7749):516-520. doi: 10.1038/s41586-019-1001-1
    [4] PAERL H W,XU H.Protecting global aquatic resources from the mountains to the sea:growing need for dual nutrient (N and P) input controls along the freshwater-to-marine continuum[J].Science Bulletin,2023,68(1):21-24. doi: 10.1016/j.scib.2022.12.015
    [5] 胡晓燕,朱元荣,孙福红,等.河流氮磷和水量输入对太湖富营养化的影响机理研究[J].环境科学研究,2022,35(6):1407-1418.

    HU X Y,ZHU Y R,SUN F H,et al.Mechanism research of the effects of water quality (nitrogen and phosphorus concentrations) and water volume on eutrophication of Lake Taihu[J].Research of Environmental Sciences,2022,35(6):1407-1418.
    [6] PAERL H W,HUISMAN J.Blooms like it hot[J].Science,2008,320(5872):57-58. doi: 10.1126/science.1155398
    [7] HUISMAN J,CODD G A,PAERL H W,et al.Cyanobacterial blooms[J].Nature Reviews Microbiology,2018,16(8):471-483. doi: 10.1038/s41579-018-0040-1
    [8] HARRISON J A,MARANGER R J,ALEXANDER R B,et al.The regional and global significance of nitrogen removal in lakes and reservoirs[J].Biogeochemistry,2009,93(1):143-157.
    [9] 李雯雯,刘瑞志,徐慧韬,等.大辽河口及其毗邻区域水体反硝化功能基因的定量研究[J].环境科学研究,2021,34(11):2625-2635. doi: 10.13198/j.issn.1001-6929.2021.05.11

    LI W W,LIU R Z,XU H T,et al.Detection of denitrifying bacteria functional genes in Daliao River Estuary and its adjacent areas by real-time quantitative PCR[J].Research of Environmental Sciences,2021,34(11):2625-2635. doi: 10.13198/j.issn.1001-6929.2021.05.11
    [10] FINDLAY S E G,MULHOLLAND P J,HAMILTON S K,et al.Cross-stream comparison of substrate-specific denitrification potential[J].Biogeochemistry,2011,104(1):381-392.
    [11] 代军帅,左小虎,王明霞,等.硝酸盐对土壤反硝化活性及蒽厌氧降解的影响[J].环境科学,2018,39(1):422-429. doi: 10.13227/j.hjkx.201706267

    DAI J S,ZUO X H,WANG M X,et al.Effect of nitrate amendment on soil denitrification activity and anthracene anaerobic degradation[J].Environmental Science,2018,39(1):422-429. doi: 10.13227/j.hjkx.201706267
    [12] 孙小溪,蒋宏忱.湖泊微生物反硝化过程及速率研究进展[J].微生物学报,2020,60(6):1162-1176. doi: 10.13343/j.cnki.wsxb.20190248

    SUN X X,JIANG H C.Progress in microbially mediated denitrifying in lacustrine environments[J].Acta Microbiologica Sinica,2020,60(6):1162-1176. doi: 10.13343/j.cnki.wsxb.20190248
    [13] PALACIN-LIZARBE C,CAMARERO L,CATALAN J.Denitrification temperature dependence in remote,cold,and N-poor lake sediments[J].Water Resources Research,2018,54(2):1161-1173. doi: 10.1002/2017WR021680
    [14] STEIN L Y,KLOTZ M G.The nitrogen cycle[J].Current Biology,2016,26(3):R94-R98. doi: 10.1016/j.cub.2015.12.021
    [15] FINLAY J C,SMALL G E,STERNER R W.Human influences on nitrogen removal in lakes[J].Science,2013,342(6155):247-250. doi: 10.1126/science.1242575
    [16] SHEN Y S,HUANG Y Y,HU J,et al.The nitrogen reduction in eutrophic water column driven by Microcystis blooms[J].Journal of Hazardous Materials,2020,385:121578. doi: 10.1016/j.jhazmat.2019.121578
    [17] 刘志迎,许海,詹旭,等.蓝藻水华对太湖水柱反硝化作用的影响[J].环境科学,2019,40(3):1261-1269. doi: 10.13227/j.hjkx.201808056

    LIU Z Y,XU H,ZHAN X,et al.Influence of cyanobacterial blooms on denitrification rate in shallow Lake Taihu,China[J].Environmental Science,2019,40(3):1261-1269. doi: 10.13227/j.hjkx.201808056
    [18] 李洁,张思凡,肖琳.微囊藻水华对水体中氮转化及微生物的影响[J].环境科学,2016,37(6):2164-2170. doi: 10.13227/j.hjkx.2016.06.020

    LI J,ZHANG S F,XIAO L.Effect of water bloom on the nitrogen transformation and the relevant bacteria[J].Environmental Science,2016,37(6):2164-2170. doi: 10.13227/j.hjkx.2016.06.020
    [19] CHEN X C,HUANG Y Y,CHEN G Q,et al.The secretion of organics by living Microcystis under the dark/anoxic condition and its enhancing effect on nitrate removal[J].Chemosphere,2018,196:280-287. doi: 10.1016/j.chemosphere.2017.12.197
    [20] ZHU L,SHI W Q,van DAM B,et al.Algal accumulation decreases sediment nitrogen removal by uncoupling nitrification-denitrification in shallow eutrophic lakes[J].Environmental Science & Technology,2020,54(10):6194-6201.
    [21] 秦伯强.浅水湖泊湖沼学与太湖富营养化控制研究[J].湖泊科学,2020,32(5):1229-1243. doi: 10.18307/2020.0501

    QIN B Q.Shallow lake limnology and control of eutrophication in Lake Taihu[J].Journal of Lake Sciences,2020,32(5):1229-1243. doi: 10.18307/2020.0501
    [22] 张虎军,宋挺,朱冰川,等.太湖蓝藻水华暴发程度年度预测[J].中国环境监测,2022,38(1):157-164.

    ZHANG H J,SONG T,ZHU B C,et al.Annual forecast of the extent of cyanobacteria bloom in Taihu Lake[J].Environmental Monitoring in China,2022,38(1):157-164.
    [23] 王震,吴挺峰,邹华,等.太湖不同湖区风浪的季节变化特征[J].湖泊科学,2016,28(1):217-224. doi: 10.18307/2016.0125

    WANG Z,WU T F,ZOU H,et al.Changes in seasonal characteristics of wind and wave in different regions of Lake Taihu[J].Journal of Lake Sciences,2016,28(1):217-224. doi: 10.18307/2016.0125
    [24] 李俊达,李云梅,吕恒,等.浅水富营养化湖泊蓝藻垂向分布特征及其动力机制研究:以太湖为例[J].环境科学学报,2022,42(7):318-328.

    LI J D,LI Y M,LÜ H,et al.Vertical distribution characteristics of cyanobacteria and its dynamic mechanism in shallow eutrophic lakes:a case of Lake Taihu[J].Acta Scientiae Circumstantiae,2022,42(7):318-328.
    [25] GAO D Z,LIU C,LI X F,et al.High importance of coupled nitrification-denitrification for nitrogen removal in a large periodically low-oxygen estuary[J].The Science of the Total Environment,2022,846:157516. doi: 10.1016/j.scitotenv.2022.157516
    [26] 韩菲尔.太湖水体浮游植物氮素吸收过程及其影响因素[D].苏州:苏州科技大学,2019.
    [27] 李昌杰,许海,詹旭,等.反硝化脱氮对太湖蓝藻水华态势的影响[J].环境科学,2023,44(9):1-12.

    LI C J,XU H,ZHAN X,et al.Denitrification influencing on cyanobacterial blooms trends in Lake Taihu,China[J].Environmental Science,2023,44(9):1-12.
    [28] ZHANG D D,LI M Y,YANG Y C,et al.Nitrite and nitrate reduction drive sediment microbial nitrogen cycling in a eutrophic lake[J].Water Research,2022,220:118637. doi: 10.1016/j.watres.2022.118637
    [29] 王子聪,许海,詹旭,等.天目湖流域沟塘湿地脱氮速率的时空差异[J].环境科学研究,2022,35(4):979-988.

    WANG Z C,XU H,ZHAN X,et al.Temporal and spatial characteristics of nitrogen removal in ditches and ponds in Tianmuhu Lake Basin[J].Research of Environmental Sciences,2022,35(4):979-988.
    [30] SENGA Y,SATO T,KUROIWA M,et al.Anammox and denitrification in the intertidal sediment of the hypereutrophic yatsu tidal flat,Japan[J].Estuaries and Coasts,2019,42(3):665-674. doi: 10.1007/s12237-019-00520-6
    [31] 祖瑶,陈思语,罗玉,等.蓝藻水华水样总氮含量的测定[J].水生生物学报,2023,47(1):55-60.

    ZU Y,CHEN S Y,LUO Y,et al.Determination of total nitrogen content in cyanobacterial blooms[J].Acta Hydrobiologica Sinica,2023,47(1):55-60.
    [32] 彭宇科,路俊玲,陈慧萍,等.蓝藻水华形成过程对氮磷转化功能细菌群的影响[J].环境科学,2018,39(11):4938-4945. doi: 10.13227/j.hjkx.201801195

    PENG Y K,LU J L,CHEN H P,et al.Dynamic changes of nitrogen-transforming and phosphorus-accumulating bacteria along with the formation of cyanobacterial blooms[J].Environmental Science,2018,39(11):4938-4945. doi: 10.13227/j.hjkx.201801195
    [33] HU B,QUAN J N,HUANG K,et al.Effects of C/N ratio and dissolved oxygen on aerobic denitrification process:a mathematical modeling study[J].Chemosphere,2021,272:129521. doi: 10.1016/j.chemosphere.2020.129521
    [34] 朱梦圆,朱广伟,王永平.太湖蓝藻水华衰亡对沉积物氮、磷释放的影响[J].环境科学,2011,32(2):409-415. doi: 10.13227/j.hjkx.2011.02.031

    ZHU M Y,ZHU G W,WANG Y P.Influence of scum of algal bloom on the release of N and P from sediments of Lake Taihu[J].Environmental Science,2011,32(2):409-415. doi: 10.13227/j.hjkx.2011.02.031
    [35] PENG Y K,LIU L,JIANG L J,et al.The roles of cyanobacterial bloom in nitrogen removal[J].Science of the Total Environment,2017,609:297-303. doi: 10.1016/j.scitotenv.2017.03.149
  • 加载中
图(7)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  28
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 修回日期:  2023-06-25
  • 网络出版日期:  2023-07-03

目录

    /

    返回文章
    返回