Evolution Characteristics of Aerosol Chemical Components and Water Content During Sandstorms in the Fenwei Plain
-
摘要: 为研究沙尘过程对下游城市地区空气质量的影响,本文基于2021年3月10日—4月6日气溶胶化学组分和气象要素的在线观测数据,结合MODIS卫星遥感AOD (Aerosol Optical Depth)数据、MERRA 2再分析数据和环境六要素数据,探讨了汾渭平原两次沙尘过程和一次扬尘过程中气溶胶化学组分的演变特征,使用ISORRPIA Ⅱ模式计算了气溶胶含水量和pH,分析了其变化特征. 结果表明:① 沙尘1(2021年3月16日00:00—21日07:00)、扬尘(3月21日08:00—28日14:00)和沙尘2(3月28日15:00—31日21:00)期间,西安市PM10平均浓度分别为309.5、168.3和472.2 μg/m3,分别是沙尘前(3月10日00:00—15日22:00)的2.7、1.5和4.1倍. ②两次沙尘和扬尘均起源于内蒙古自治区阿拉善盟以及甘肃省酒泉市—张掖市—金昌市一带,但由于传输路径存在显著差异,导致对地面PM2.5浓度的影响不同,沙尘1、扬尘和沙尘2期间PM2.5浓度分别是沙尘前的1.2、1.1和2.5倍. ③沙尘和扬尘过程中PM2.5中水溶性离子浓度占比均减小,沙尘1、扬尘和沙尘2中水溶性离子占比分别为45.8%、37.9%和14.8%. 在不同阶段PM2.5中水溶性离子占比最高的均为NO3−,范围为24.6%(沙尘2)~38.7%(沙尘前);其次是NH4+,占比在19.1%(沙尘前)~22.3%(沙尘2)之间. 沙尘过程对SO2转化生成SO42−的影响要弱于对NO2转化生成NO3−的影响. ④沙尘1过程中POC (一次有机碳)占比最高为49.0%,但在扬尘和沙尘2过程中POC占比均较低,分别为42.3%和41.2%,略低于沙尘前. ⑤沙尘1、扬尘和沙尘2过程中气溶胶含水量均显著降低,分别为沙尘前的29.9%、43.7%和6.2%. ⑥沙尘过程使得水溶性离子中阳离子含量增加,使得气溶胶碱性增强. 沙尘1和沙尘2过程中pH分别为6.7和6.5,高于沙尘前(6.2). 研究显示,沙尘传输对汾渭平原城市大气中PM2.5化学组分影响较大,显著降低了气溶胶的含水量,增加了气溶胶的pH,导致气溶胶的酸碱性变化,从而影响气溶胶化学组分的生成机制.Abstract: Repeatedly occurring sandstorms represent a significant concern in northern China because of their related hazards since particulate matter has harmful impacts on air quality in leeward cities. From March to April 2021, two sandstorms and one dust event (SDS) occurred in the Fenwei Plain. The spatial-temporal variation of aerosol chemical components was studied using simultaneous on-line ambient ions monitor, OC/EC online analyzer, weather and environmental data. The spatial distribution and transport of the sandstorms was represented by the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1) aerosol optical depth (AOD) product sand Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA 2) reanalysis datasets. Additionally, the ISORROPIA Ⅱ model was used to calculate aerosol water content and pH. The results showed that during sandstorm 1 (00:00, March 16th-07:00, March 21st), dust (08:00, March 21st-14:00, March 28th) and sandstorm 2 (15:00, March 28 th-21:00, March 31st), the average PM10 concentration in Xi´an City reached 309.5, 168.3 and 472.2 μg/m3, respectively, which was 2.7, 1.5 and 4.1 times higher than that before the sandstorm (00:00, March 10th-22:00, March 15th). The SDS events originated from Alxa League in Inner Mongolia and Jiuquan-Zhangye-Jinchang in Gansu Province, and experienced different transport pathways before reaching the Fenwei Plain, therefor the contribution of SDS to the surface PM2.5 concentrations showed significant difference. PM2.5 concentration increased by 2.5 times during sandstorm 2 compared with that before sandstorm, followed by the concentration increase in sandstorm 1 (1.2 times) and dust event (1.1 times). The content of water-soluble ions in PM2.5 decreased during the SDS events, accounting for 45.8%, 37.9% and 14.8% of PM2.5 in sandstorm 1, dust and sandstorm 2, respectively. Among the water-soluble ions, NO3− had the largest proportion in all SDS events, accounting for 24.6% (sandstorm 2)-38.7% (before sandstorm), followed by NH4+, accounting for 19.1% (before sandstorm)-22.3% (sandstorm 2). The effect of the sandstorm process on the conversion of SO2 to SO42− was weaker than that of NO2 to NO3−. The proportion of POC (Primary Organic Carbon) in PM2.5 was the highest in sandstorm 1, reaching 49.0%, and decreased to 42.3% and 41.2% in the dust and sandstorm 2, respectively, slightly lower than before the sandstorm. During sandstorm 1, dust and sandstorm 2, the water content of aerosols decreased by 29.9%, 43.7% and 6.2%, significantly, compared with those before sandstorm. The SDS process increased the concentration of water-soluble cations, resulting in an increase of aerosol alkalinity. The pH values of sandstorm 1 and sandstorm 2 were 6.7 and 6.5, respectively, which were higher than the pH (6.2) before the sandstorm. In summary, the impact of the SDS events on the PM2.5 chemical composition in the Fenwei Plain was significant, leading to a significant decrease in aerosol water content, a increase in pH, a change in acidity/basicity, and even a change of the mechanism of aerosol chemical composition formation.
-
Key words:
- sandstorm /
- Fenwei Plain /
- water-soluble ions /
- carbonaceous aerosol /
- aerosol water content /
- pH
-
表 1 西安市观测期间不同阶段大气污染物浓度和气象要素汇总
Table 1. Summary of the atmospheric pollutants and meteorological variables at different stages during measurements in Xi′an City
项目 沙尘前 沙尘1 扬尘 沙尘2 沙尘后 SO2浓度/(μg/m3) 9.2 8.1 9.7 10.2 7.3 NO2浓度/(μg/m3) 52.8 40.1 59.8 39.3 33.0 O3浓度/(μg/m3) 27.8 29.8 35.5 57.6 34.8 CO浓度/(mg/m3) 1.0 0.7 0.7 0.7 0.6 PM10浓度/(μg/m3) 114.1 309.5 168.3 472.2 35.9 PM2.5浓度/(μg/m3) 56.0 66.3 58.9 138.0 22.8 PM2.5/PM10 0.45 0.24 0.30 0.30 0.52 AE 0.79 0.36 0.23 0.18 0.26 CE 0.95 0.50 0.43 0.46 0.37 NO3−/SO42− 2.31 1.76 3.35 2.19 2.13 NOR 0.31 0.17 0.11 0.11 0.18 SOR 0.46 0.33 0.16 0.17 0.24 温度/℃ 13.4 11.9 15.6 17.8 11.6 风速/(m/s) 0.6 0.7 0.6 0.8 0.5 RH/% 75.5 62.3 49.6 51.5 88.0 能见度/km 5.9 11.0 14.1 9.6 14.1 -
[1] 吴丽萍,李丽明,张向炎,等.2018年冬季淄博市一次沙尘天气颗粒物污染特征研究[J].环境科学研究,2021,34(1):92-102.WU L P,LI L M,ZHANG X Y,et al.Characteristics of atmospheric particulate matters during winter sandstorm period in 2018 in Zibo City[J].Research of Environmental Sciences,2021,34(1):92-102. [2] DRAKAKI E,AMIRIDIS V,TSEKERI A,et al.Modeling coarse and giant desert dust particles[J].Atmospheric Chemistry and Physics,2022,22(18):12727-12748. doi: 10.5194/acp-22-12727-2022 [3] KOULOURI E,SAARIKOSKI S,THEODOSI C,et al.Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean[J].Atmospheric Environment,2008,42(26):6542-6550. doi: 10.1016/j.atmosenv.2008.04.010 [4] WONG Y K,LIU K M,YEUNG C,et al.Measurement report:characterization and source apportionment of coarse particulate matter in Hong Kong:insights into the constituents of unidentified mass and source origins in a coastal city in Southern China[J].Atmospheric Chemistry and Physics,2022,22(7):5017-5031. doi: 10.5194/acp-22-5017-2022 [5] TAN S C,SHI G Y,WANG H.Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas[J].Atmospheric Environment,2012,46:299-308. doi: 10.1016/j.atmosenv.2011.09.058 [6] 孙婷婷,项衍,罗宇涵,等.基于综合立体观测网的京津冀地区污染过程分析[J].环境科学研究,2021,34(1):20-27.SUN T T,XIANG Y,LUO Y H,et al.Pollution process in Beijing-Tianjin-Hebei and its surrounding areas based on comprehensive stereoscopic observation network[J].Research of Environmental Sciences,2021,34(1):20-27. [7] 李卫军,邵龙义,余华,等.内陆输送过程中沙尘单颗粒类型及其非均相反应[J].中国环境科学,2008,28(3):193-197.LI W J,SHAO L Y,YU H,et al.Individual dust particles of long-range transport over continent of China:types and sulfuric heterogeneous reactions[J].China Environmental Science,2008,28(3):193-197. [8] 杨景朝,陶勇,杜云松,等.四川盆地冬季两次典型大气污染过程对比分析[J].环境科学研究,2021,34(8):1792-1801.YANG J C,TAO Y,DU Y S,et al.Comparative analysis of two typical air pollution processes in Sichuan Basin in winter[J].Research of Environmental Sciences,2021,34(8):1792-1801. [9] NIE W,WANG T,XUE L K,et al.Asian dust storm observed at a rural mountain site in Southern China:chemical evolution and heterogeneous photochemistry[J].Atmospheric Chemistry and Physics,2012,12(24):11985-11995. doi: 10.5194/acp-12-11985-2012 [10] WANG L,DU H H,CHEN J M,et al.Consecutive transport of anthropogenic air masses and dust storm plume:two case events at Shanghai,China[J].Atmospheric Research,2013,127:22-33. doi: 10.1016/j.atmosres.2013.02.011 [11] SHEN L J,HAO F,GAO M,et al.Real-time geochemistry of urban aerosol during a heavy dust episode by single-particle aerosol mass spectrometer:spatio-temporal variability,mixing state and spectral distribution[J].Particuology,2020,53:197-207. doi: 10.1016/j.partic.2020.02.001 [12] 贾瑞,李君,祝清哲,等.中国西北地区气溶胶的三维分布特征及其成因[J].中国沙漠,2021,41(3):34-43.JIA R,LI J,ZHU Q Z,et al.Three-dimensional distribution and formation causes of aerosols over northwest China[J].Journal of Desert Research,2021,41(3):34-43. [13] 王建英,张肃诏,雍佳,等.宁夏典型工业城市2020年1月重污染过程特征及成因[J].环境科学研究,2021,34(8):1802-1811.WANG J Y,ZHANG S Z,YONG J,et al.Characteristics and causes of heavy pollution in typical industrial city in Ningxia in January 2020[J].Research of Environmental Sciences,2021,34(8):1802-1811. [14] ADAMS J W,RODRIGUEZ D,COX R A.The uptake of SO2 on Saharan dust:a flow tube study[J].Atmospheric Chemistry and Physics,2005,5(10):2679-2689. doi: 10.5194/acp-5-2679-2005 [15] 王宁,陈健,张缘园,等.2021年中国北方首次沙尘天气的多源遥感分析[J].中国环境科学,2022,42(5):2002-2014.WANG N,CHEN J,ZHANG Y Y,et al.Multi-source remote sensing analysis of the first sand and dust weather in Northern China in 2021[J].China Environmental Science,2022,42(5):2002-2014. [16] 刁刘丽,李森,刘保双,等.驻马店市区采暖季PM2.5时间和空间来源解析研究[J].环境科学研究,2021,34(1):79-91.DIAO L L,LI S,LIU B S,et al.Temporal and spatial source apportionment during the heating period in Zhumadian[J].Research of Environmental Sciences,2021,34(1):79-91. [17] YANG L L,HU Z Y,HUANG Z W,et al.Detection of a dust storm in 2020 by a multi-observation platform over the Northwest China[J].Remote Sensing,2021,13(6):1056. doi: 10.3390/rs13061056 [18] 朱媛媛,高愈霄,柴文轩,等.京津冀及周边区域PM2.5叠加沙尘重污染过程特征及预报效果分析[J].环境科学,2020,41(2):574-586.ZHU Y Y,GAO Y X,CHAI W X,et al.Heavy pollution characteristics and assessment of PM2.5 predicted model results in Beijing-Tianjin-Hebei Region and surrounding areas during November 23 to December 4, 2018[J].Environmental Science,2020,41(2):574-586. [19] 贺沅平,张云伟,顾兆林.特强沙尘暴灾害性天气的研究及展望[J].中国环境科学,2021,41(8):3511-3522. doi: 10.3969/j.issn.1000-6923.2021.08.005HE Y P,ZHANG Y W,GU Z L.Research progress of very strong sandstorm and its future research prospects[J].China Environmental Science,2021,41(8):3511-3522. doi: 10.3969/j.issn.1000-6923.2021.08.005 [20] 宁海文,王式功,杜继稳.西安沙尘天气特征及其对空气质量的影响[J].中国沙漠,2005,25(6):886-890.NING H W,WANG S G,DU J W.Characteristics of sand-dust events and their influence on air quality of Xi'an City[J].Journal of Desert Research,2005,25(6):886-890. [21] REN Y Q,WANG G H,LI J J,et al.Evolution of aerosol chemistry in Xi'an during the spring dust storm periods:implications for heterogeneous formation of secondary organic aerosols on the dust surface[J].Chemosphere,2019,215:413-421. doi: 10.1016/j.chemosphere.2018.10.064 [22] 魏颖,陈焕盛,刘航,等.春季沙尘对关中地区PM2.5浓度影响的多尺度模拟研究[J].大气科学,2020,44(1):76-92.WEI Y,CHEN H S,LIU H,et al.Multi-scale simulation of the influence of spring dust on PM2.5 concentration in Central Shaanxi area,China[J].Chinese Journal of Atmospheric Sciences,2020,44(1):76-92. [23] 张俊美,陈仕霖,王乾恒,等.郑州市大气PM2.5中水溶性离子的污染特征及来源解析[J].环境科学,2023,44(2):602-610.ZHANG J M,CHEN S L,WANG Q H,et al.Pollution characteristics and source analysis of water-soluble ions in atmospheric PM2.5 in Zhengzhou[J].Environmental Science,2023,44(2):602-610. [24] CHOW J C,WATSON J G,LU Z Q,et al.Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J].Atmospheric Environment,1996,30(12):2079-2112. doi: 10.1016/1352-2310(95)00402-5 [25] TURPIN B J,HUNTZICKER J J.Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J].Atmospheric Environment,1995,29(23):3527-3544. doi: 10.1016/1352-2310(94)00276-Q [26] CASTRO L M,PIO C A,HARRISON R M,et al.Carbonaceous aerosol in urban and rural European atmospheres:estimation of secondary organic carbon concentrations[J].Atmospheric Environment,1999,33(17):2771-2781. doi: 10.1016/S1352-2310(98)00331-8 [27] LEE H J,LIU Y,COULL B A,et al.A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J].Atmospheric Chemistry and Physics,2011,11(15):7991-8002. doi: 10.5194/acp-11-7991-2011 [28] 吴浩,许潇锋,杨晓玥,等.青藏高原及周边区域沙尘气溶胶三维分布和传输特征[J].环境科学学报,2020,40(11):4081-4091.WU H,XU X F,YANG X Y,et al.Three-dimensional distribution and transport characteristics of dust over Tibetan Plateau and surrounding areas[J].Acta Scientiae Circumstantiae,2020,40(11):4081-4091. [29] 曹闪闪,段玉森,高婵婵,等.基于MERRA-2再分析资料的上海市近40年大气黑碳浓度变化及潜在来源解析[J].环境科学,2021,42(6):2668-2678.CAO S S,DUAN Y S,GAO C C,et al.Changes and potential sources of atmospheric black carbon concentration in Shanghai over the past 40 years based on MERRA-2 reanalysis data[J].Environmental Science,2021,42(6):2668-2678. [30] NENES A,PANDIS S N,PILINIS C.ISORROPIA:a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols[J].Aquatic Geochemistry,1998,4(1):123-152. doi: 10.1023/A:1009604003981 [31] FOUNTOUKIS C,NENES A.ISORROPIA Ⅱ:a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2O aerosols[J].Atmospheric Chemistry and Physics,2007,7(17):4639-4659. doi: 10.5194/acp-7-4639-2007 [32] WANG Y Q,ZHANG X Y,DRAXLER R R.TrajStat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J].Environmental Modelling & Software,2009,24(8):938-939. [33] MANOJKUMAR N,SRIMURUGANANDAM B.Size-segregated particulate matter and health effects in air pollution in India:a review[J].Environmental Chemistry Letters,2021,19(5):3837-3858. doi: 10.1007/s10311-021-01277-w [34] GOMES L,GILLETTE D A.A comparison of characteristics of aerosol from dust storms in Central Asia with soil-derived dust from other regions[J].Atmospheric Environment Part A General Topics,1993,27(16):2539-2544. doi: 10.1016/0960-1686(93)90027-V [35] 谷超,徐涛,马超,等.伊犁河谷核心区春季PM2.5组分特征及来源解析[J].环境科学,2023,44(4):1899-1910.GU C,XU T,MA C,et al.Composition characteristics and source analysis of PM2.5 in the core area of Yili River Valley in spring[J].Environmental Science,2023,44(4):1899-1910. -