留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沙尘过程中汾渭平原气溶胶化学组分及含水量的演变特征研究

刁一伟 杨孟 沈利娟 王红磊 刘焕武 刘诗云 赵天良

刁一伟, 杨孟, 沈利娟, 王红磊, 刘焕武, 刘诗云, 赵天良. 沙尘过程中汾渭平原气溶胶化学组分及含水量的演变特征研究[J]. 环境科学研究, 2023, 36(9): 1654-1664. doi: 10.13198/j.issn.1001-6929.2023.07.13
引用本文: 刁一伟, 杨孟, 沈利娟, 王红磊, 刘焕武, 刘诗云, 赵天良. 沙尘过程中汾渭平原气溶胶化学组分及含水量的演变特征研究[J]. 环境科学研究, 2023, 36(9): 1654-1664. doi: 10.13198/j.issn.1001-6929.2023.07.13
DIAO Yiwei, YANG Meng, SHEN Lijuan, WANG Honglei, LIU Huanwu, LIU Shiyun, ZHAO Tianliang. Evolution Characteristics of Aerosol Chemical Components and Water Content During Sandstorms in the Fenwei Plain[J]. Research of Environmental Sciences, 2023, 36(9): 1654-1664. doi: 10.13198/j.issn.1001-6929.2023.07.13
Citation: DIAO Yiwei, YANG Meng, SHEN Lijuan, WANG Honglei, LIU Huanwu, LIU Shiyun, ZHAO Tianliang. Evolution Characteristics of Aerosol Chemical Components and Water Content During Sandstorms in the Fenwei Plain[J]. Research of Environmental Sciences, 2023, 36(9): 1654-1664. doi: 10.13198/j.issn.1001-6929.2023.07.13

沙尘过程中汾渭平原气溶胶化学组分及含水量的演变特征研究

doi: 10.13198/j.issn.1001-6929.2023.07.13
基金项目: 国家重点研发计划项目(No.2022YFC3701204);国家自然科学基金项目(No.42275196);无锡学院引进人才科研启动专项经费(No.2023r035)
详细信息
    作者简介:

    刁一伟(1977-),男,浙江舟山人,讲师,博士,主要从事大气气溶胶来源特征研究,diaoyw@cwxu.edu.cn

    通讯作者:

    ①沈利娟(1987-),女,江苏启东人,讲师,博士,主要从事大气环境研究,shenlj@cwxu.edu.cn

    ②王红磊(1988-),男,山东蒙阴人,副教授,博士,主要从事云-气溶胶相互作用研究,hongleiwang@nuist.edu.cn

  • 中图分类号: X51

Evolution Characteristics of Aerosol Chemical Components and Water Content During Sandstorms in the Fenwei Plain

Funds: National Key Research and Development Program of China (No.2022YFC3701204); National Natural Science Foundation of China (No.42275196); Wuxi University Research Start-Up Fund for Introduced Talents, China (No.2023r035)
  • 摘要: 为研究沙尘过程对下游城市地区空气质量的影响,本文基于2021年3月10日—4月6日气溶胶化学组分和气象要素的在线观测数据,结合MODIS卫星遥感AOD (Aerosol Optical Depth)数据、MERRA 2再分析数据和环境六要素数据,探讨了汾渭平原两次沙尘过程和一次扬尘过程中气溶胶化学组分的演变特征,使用ISORRPIA Ⅱ模式计算了气溶胶含水量和pH,分析了其变化特征. 结果表明:① 沙尘1(2021年3月16日00:00—21日07:00)、扬尘(3月21日08:00—28日14:00)和沙尘2(3月28日15:00—31日21:00)期间,西安市PM10平均浓度分别为309.5、168.3和472.2 μg/m3,分别是沙尘前(3月10日00:00—15日22:00)的2.7、1.5和4.1倍. ②两次沙尘和扬尘均起源于内蒙古自治区阿拉善盟以及甘肃省酒泉市—张掖市—金昌市一带,但由于传输路径存在显著差异,导致对地面PM2.5浓度的影响不同,沙尘1、扬尘和沙尘2期间PM2.5浓度分别是沙尘前的1.2、1.1和2.5倍. ③沙尘和扬尘过程中PM2.5中水溶性离子浓度占比均减小,沙尘1、扬尘和沙尘2中水溶性离子占比分别为45.8%、37.9%和14.8%. 在不同阶段PM2.5中水溶性离子占比最高的均为NO3,范围为24.6%(沙尘2)~38.7%(沙尘前);其次是NH4+,占比在19.1%(沙尘前)~22.3%(沙尘2)之间. 沙尘过程对SO2转化生成SO42−的影响要弱于对NO2转化生成NO3的影响. ④沙尘1过程中POC (一次有机碳)占比最高为49.0%,但在扬尘和沙尘2过程中POC占比均较低,分别为42.3%和41.2%,略低于沙尘前. ⑤沙尘1、扬尘和沙尘2过程中气溶胶含水量均显著降低,分别为沙尘前的29.9%、43.7%和6.2%. ⑥沙尘过程使得水溶性离子中阳离子含量增加,使得气溶胶碱性增强. 沙尘1和沙尘2过程中pH分别为6.7和6.5,高于沙尘前(6.2). 研究显示,沙尘传输对汾渭平原城市大气中PM2.5化学组分影响较大,显著降低了气溶胶的含水量,增加了气溶胶的pH,导致气溶胶的酸碱性变化,从而影响气溶胶化学组分的生成机制.

     

  • 图  1  观测期间离子电荷平衡关系以及不同阶段OC与EC浓度的散点图

    Figure  1.  The fit relationship between AE and CE concentrations during the measurement period and the comparison of OC and EC concentrations in PM2.5 at different stages

    图  2  观测期间西安市气象要素和PM浓度的时间演变特征

    Figure  2.  Time series of meteorological variables and mass concentration of PM during the measurement period in Xi′an City

    图  3  西安市观测期间不同阶段AOD的空间分布特征

    Figure  3.  Spatial distribution of AOD at different stages during measurements in Xi′an City

    图  4  西安市观测期间逐日24 h后向轨迹

    注:10~31代表3月10—31日的后向轨迹,1~5代表4月1—5日的后向轨迹.

    Figure  4.  Daily backward trajectory cluster analysis (24 h) during the measurement period during measurements in Xi′an City

    图  5  西安市不同阶段下MERRA 2地面沙尘浓度空间分布特征

    Figure  5.  Spatial distribution of surface dust concentrations based on MERRA 2 data at different stages during measurements in Xi′an City

    图  6  观测期间不同阶段PM2.5中化学组分浓度和占比

    Figure  6.  Chemical composition mass concentrations and proportions of PM2.5 at different stages

    图  7  观测期间不同阶段PM2.5中POC和SOC的浓度及在OC中占比

    Figure  7.  POC and SOC mass concentrations and ratios distributions of OC in PM2.5 at different stages

    图  8  观测期间不同阶段下PM2.5中气溶胶含水量和pH

    Figure  8.  Aerosol water content and pH values in PM2.5 at different stages

    表  1  西安市观测期间不同阶段大气污染物浓度和气象要素汇总

    Table  1.   Summary of the atmospheric pollutants and meteorological variables at different stages during measurements in Xi′an City

    项目沙尘前沙尘1扬尘沙尘2沙尘后
    SO2浓度/(μg/m3)9.28.19.710.27.3
    NO2浓度/(μg/m3)52.840.159.839.333.0
    O3浓度/(μg/m3)27.829.835.557.634.8
    CO浓度/(mg/m3)1.00.70.70.70.6
    PM10浓度/(μg/m3)114.1309.5168.3472.235.9
    PM2.5浓度/(μg/m3)56.066.358.9138.022.8
    PM2.5/PM100.450.240.300.300.52
    AE0.790.360.230.180.26
    CE0.950.500.430.460.37
    NO3/SO42−2.311.763.352.192.13
    NOR0.310.170.110.110.18
    SOR0.460.330.160.170.24
    温度/℃13.411.915.617.811.6
    风速/(m/s)0.60.70.60.80.5
    RH/%75.562.349.651.588.0
    能见度/km5.911.014.19.614.1
    下载: 导出CSV
  • [1] 吴丽萍,李丽明,张向炎,等.2018年冬季淄博市一次沙尘天气颗粒物污染特征研究[J].环境科学研究,2021,34(1):92-102.

    WU L P,LI L M,ZHANG X Y,et al.Characteristics of atmospheric particulate matters during winter sandstorm period in 2018 in Zibo City[J].Research of Environmental Sciences,2021,34(1):92-102.
    [2] DRAKAKI E,AMIRIDIS V,TSEKERI A,et al.Modeling coarse and giant desert dust particles[J].Atmospheric Chemistry and Physics,2022,22(18):12727-12748. doi: 10.5194/acp-22-12727-2022
    [3] KOULOURI E,SAARIKOSKI S,THEODOSI C,et al.Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean[J].Atmospheric Environment,2008,42(26):6542-6550. doi: 10.1016/j.atmosenv.2008.04.010
    [4] WONG Y K,LIU K M,YEUNG C,et al.Measurement report:characterization and source apportionment of coarse particulate matter in Hong Kong:insights into the constituents of unidentified mass and source origins in a coastal city in Southern China[J].Atmospheric Chemistry and Physics,2022,22(7):5017-5031. doi: 10.5194/acp-22-5017-2022
    [5] TAN S C,SHI G Y,WANG H.Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas[J].Atmospheric Environment,2012,46:299-308. doi: 10.1016/j.atmosenv.2011.09.058
    [6] 孙婷婷,项衍,罗宇涵,等.基于综合立体观测网的京津冀地区污染过程分析[J].环境科学研究,2021,34(1):20-27.

    SUN T T,XIANG Y,LUO Y H,et al.Pollution process in Beijing-Tianjin-Hebei and its surrounding areas based on comprehensive stereoscopic observation network[J].Research of Environmental Sciences,2021,34(1):20-27.
    [7] 李卫军,邵龙义,余华,等.内陆输送过程中沙尘单颗粒类型及其非均相反应[J].中国环境科学,2008,28(3):193-197.

    LI W J,SHAO L Y,YU H,et al.Individual dust particles of long-range transport over continent of China:types and sulfuric heterogeneous reactions[J].China Environmental Science,2008,28(3):193-197.
    [8] 杨景朝,陶勇,杜云松,等.四川盆地冬季两次典型大气污染过程对比分析[J].环境科学研究,2021,34(8):1792-1801.

    YANG J C,TAO Y,DU Y S,et al.Comparative analysis of two typical air pollution processes in Sichuan Basin in winter[J].Research of Environmental Sciences,2021,34(8):1792-1801.
    [9] NIE W,WANG T,XUE L K,et al.Asian dust storm observed at a rural mountain site in Southern China:chemical evolution and heterogeneous photochemistry[J].Atmospheric Chemistry and Physics,2012,12(24):11985-11995. doi: 10.5194/acp-12-11985-2012
    [10] WANG L,DU H H,CHEN J M,et al.Consecutive transport of anthropogenic air masses and dust storm plume:two case events at Shanghai,China[J].Atmospheric Research,2013,127:22-33. doi: 10.1016/j.atmosres.2013.02.011
    [11] SHEN L J,HAO F,GAO M,et al.Real-time geochemistry of urban aerosol during a heavy dust episode by single-particle aerosol mass spectrometer:spatio-temporal variability,mixing state and spectral distribution[J].Particuology,2020,53:197-207. doi: 10.1016/j.partic.2020.02.001
    [12] 贾瑞,李君,祝清哲,等.中国西北地区气溶胶的三维分布特征及其成因[J].中国沙漠,2021,41(3):34-43.

    JIA R,LI J,ZHU Q Z,et al.Three-dimensional distribution and formation causes of aerosols over northwest China[J].Journal of Desert Research,2021,41(3):34-43.
    [13] 王建英,张肃诏,雍佳,等.宁夏典型工业城市2020年1月重污染过程特征及成因[J].环境科学研究,2021,34(8):1802-1811.

    WANG J Y,ZHANG S Z,YONG J,et al.Characteristics and causes of heavy pollution in typical industrial city in Ningxia in January 2020[J].Research of Environmental Sciences,2021,34(8):1802-1811.
    [14] ADAMS J W,RODRIGUEZ D,COX R A.The uptake of SO2 on Saharan dust:a flow tube study[J].Atmospheric Chemistry and Physics,2005,5(10):2679-2689. doi: 10.5194/acp-5-2679-2005
    [15] 王宁,陈健,张缘园,等.2021年中国北方首次沙尘天气的多源遥感分析[J].中国环境科学,2022,42(5):2002-2014.

    WANG N,CHEN J,ZHANG Y Y,et al.Multi-source remote sensing analysis of the first sand and dust weather in Northern China in 2021[J].China Environmental Science,2022,42(5):2002-2014.
    [16] 刁刘丽,李森,刘保双,等.驻马店市区采暖季PM2.5时间和空间来源解析研究[J].环境科学研究,2021,34(1):79-91.

    DIAO L L,LI S,LIU B S,et al.Temporal and spatial source apportionment during the heating period in Zhumadian[J].Research of Environmental Sciences,2021,34(1):79-91.
    [17] YANG L L,HU Z Y,HUANG Z W,et al.Detection of a dust storm in 2020 by a multi-observation platform over the Northwest China[J].Remote Sensing,2021,13(6):1056. doi: 10.3390/rs13061056
    [18] 朱媛媛,高愈霄,柴文轩,等.京津冀及周边区域PM2.5叠加沙尘重污染过程特征及预报效果分析[J].环境科学,2020,41(2):574-586.

    ZHU Y Y,GAO Y X,CHAI W X,et al.Heavy pollution characteristics and assessment of PM2.5 predicted model results in Beijing-Tianjin-Hebei Region and surrounding areas during November 23 to December 4, 2018[J].Environmental Science,2020,41(2):574-586.
    [19] 贺沅平,张云伟,顾兆林.特强沙尘暴灾害性天气的研究及展望[J].中国环境科学,2021,41(8):3511-3522. doi: 10.3969/j.issn.1000-6923.2021.08.005

    HE Y P,ZHANG Y W,GU Z L.Research progress of very strong sandstorm and its future research prospects[J].China Environmental Science,2021,41(8):3511-3522. doi: 10.3969/j.issn.1000-6923.2021.08.005
    [20] 宁海文,王式功,杜继稳.西安沙尘天气特征及其对空气质量的影响[J].中国沙漠,2005,25(6):886-890.

    NING H W,WANG S G,DU J W.Characteristics of sand-dust events and their influence on air quality of Xi'an City[J].Journal of Desert Research,2005,25(6):886-890.
    [21] REN Y Q,WANG G H,LI J J,et al.Evolution of aerosol chemistry in Xi'an during the spring dust storm periods:implications for heterogeneous formation of secondary organic aerosols on the dust surface[J].Chemosphere,2019,215:413-421. doi: 10.1016/j.chemosphere.2018.10.064
    [22] 魏颖,陈焕盛,刘航,等.春季沙尘对关中地区PM2.5浓度影响的多尺度模拟研究[J].大气科学,2020,44(1):76-92.

    WEI Y,CHEN H S,LIU H,et al.Multi-scale simulation of the influence of spring dust on PM2.5 concentration in Central Shaanxi area,China[J].Chinese Journal of Atmospheric Sciences,2020,44(1):76-92.
    [23] 张俊美,陈仕霖,王乾恒,等.郑州市大气PM2.5中水溶性离子的污染特征及来源解析[J].环境科学,2023,44(2):602-610.

    ZHANG J M,CHEN S L,WANG Q H,et al.Pollution characteristics and source analysis of water-soluble ions in atmospheric PM2.5 in Zhengzhou[J].Environmental Science,2023,44(2):602-610.
    [24] CHOW J C,WATSON J G,LU Z Q,et al.Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J].Atmospheric Environment,1996,30(12):2079-2112. doi: 10.1016/1352-2310(95)00402-5
    [25] TURPIN B J,HUNTZICKER J J.Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J].Atmospheric Environment,1995,29(23):3527-3544. doi: 10.1016/1352-2310(94)00276-Q
    [26] CASTRO L M,PIO C A,HARRISON R M,et al.Carbonaceous aerosol in urban and rural European atmospheres:estimation of secondary organic carbon concentrations[J].Atmospheric Environment,1999,33(17):2771-2781. doi: 10.1016/S1352-2310(98)00331-8
    [27] LEE H J,LIU Y,COULL B A,et al.A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J].Atmospheric Chemistry and Physics,2011,11(15):7991-8002. doi: 10.5194/acp-11-7991-2011
    [28] 吴浩,许潇锋,杨晓玥,等.青藏高原及周边区域沙尘气溶胶三维分布和传输特征[J].环境科学学报,2020,40(11):4081-4091.

    WU H,XU X F,YANG X Y,et al.Three-dimensional distribution and transport characteristics of dust over Tibetan Plateau and surrounding areas[J].Acta Scientiae Circumstantiae,2020,40(11):4081-4091.
    [29] 曹闪闪,段玉森,高婵婵,等.基于MERRA-2再分析资料的上海市近40年大气黑碳浓度变化及潜在来源解析[J].环境科学,2021,42(6):2668-2678.

    CAO S S,DUAN Y S,GAO C C,et al.Changes and potential sources of atmospheric black carbon concentration in Shanghai over the past 40 years based on MERRA-2 reanalysis data[J].Environmental Science,2021,42(6):2668-2678.
    [30] NENES A,PANDIS S N,PILINIS C.ISORROPIA:a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols[J].Aquatic Geochemistry,1998,4(1):123-152. doi: 10.1023/A:1009604003981
    [31] FOUNTOUKIS C,NENES A.ISORROPIA Ⅱ:a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3-Cl-H2O aerosols[J].Atmospheric Chemistry and Physics,2007,7(17):4639-4659. doi: 10.5194/acp-7-4639-2007
    [32] WANG Y Q,ZHANG X Y,DRAXLER R R.TrajStat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J].Environmental Modelling & Software,2009,24(8):938-939.
    [33] MANOJKUMAR N,SRIMURUGANANDAM B.Size-segregated particulate matter and health effects in air pollution in India:a review[J].Environmental Chemistry Letters,2021,19(5):3837-3858. doi: 10.1007/s10311-021-01277-w
    [34] GOMES L,GILLETTE D A.A comparison of characteristics of aerosol from dust storms in Central Asia with soil-derived dust from other regions[J].Atmospheric Environment Part A General Topics,1993,27(16):2539-2544. doi: 10.1016/0960-1686(93)90027-V
    [35] 谷超,徐涛,马超,等.伊犁河谷核心区春季PM2.5组分特征及来源解析[J].环境科学,2023,44(4):1899-1910.

    GU C,XU T,MA C,et al.Composition characteristics and source analysis of PM2.5 in the core area of Yili River Valley in spring[J].Environmental Science,2023,44(4):1899-1910.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  26
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 修回日期:  2023-06-14
  • 网络出版日期:  2023-07-12

目录

    /

    返回文章
    返回