留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塑岩:成因、分布与微塑料释放特征

王刘炜 侯德义

王刘炜, 侯德义. 塑岩:成因、分布与微塑料释放特征[J]. 环境科学研究, 2023, 36(8): 1457-1466. doi: 10.13198/j.issn.1001-6929.2023.07.14
引用本文: 王刘炜, 侯德义. 塑岩:成因、分布与微塑料释放特征[J]. 环境科学研究, 2023, 36(8): 1457-1466. doi: 10.13198/j.issn.1001-6929.2023.07.14
WANG Liuwei, HOU Deyi. Plastistone: Diagenesis, Global Distribution, and Microplastic Generation Characteristics[J]. Research of Environmental Sciences, 2023, 36(8): 1457-1466. doi: 10.13198/j.issn.1001-6929.2023.07.14
Citation: WANG Liuwei, HOU Deyi. Plastistone: Diagenesis, Global Distribution, and Microplastic Generation Characteristics[J]. Research of Environmental Sciences, 2023, 36(8): 1457-1466. doi: 10.13198/j.issn.1001-6929.2023.07.14

塑岩:成因、分布与微塑料释放特征

doi: 10.13198/j.issn.1001-6929.2023.07.14
基金项目: 国家自然科学基金项目(No.42225703)
详细信息
    作者简介:

    王刘炜(1997-),男,甘肃兰州人,wlwsoilthu@foxmail.com

    侯德义,清华大学研究生院副院长,环境学院长聘教授,博士生导师,土壤与地下水教研所所长;国家杰出青年科学基金获得者,联合国国际土壤污染合作组织(INSOP)副主席,SCI期刊Soil Use and Management主编,Science of the Total Environment副主编. 主要从事土壤与地下水污染防治的科学研究和实践应用. 在NatureScienceNature Reviews Earth & EnvironmentNature Sustainability等国际期刊上发表论文百余篇. 担任科技部重点研发计划项目首席科学家,主持和参与编写十余项国际及国内技术标准与技术指南. 担任英国土壤学会理事、中国环境科学学会土壤与地下水环境专业委员会副主任、中国生态学会污染生态专业委员会副主任等. 2021—2022年连续入选科睿唯安“全球高被引科学家”

    通讯作者:

    侯德义(1980-),男,湖南郴州人,教授,博士,博导,主要从事土壤与地下水污染过程与可持续修复研究,houdeyi@tsinghua.edu.cn

  • 中图分类号: X54

Plastistone: Diagenesis, Global Distribution, and Microplastic Generation Characteristics

Funds: National Natural Science Foundation of China (No.42225703)
  • 摘要: 塑料污染是受到全球广泛关注的环境问题,对人体健康与生态系统造成潜在威胁. 已有证据表明,塑料能够与自然界的岩石发生稳定结合,成为人类活动作为一种新的地质营力影响地球地质周期的直接证据. 在这些发现的基础上,本文提出并定义了一种新的沉积岩类型——塑岩. 塑岩是塑料与碎屑物质胶结形成的沉积岩;在塑岩中,肉眼可见的塑料与沉积岩原始物质成分在地壳表层的条件下,经熔化-凝固、蒸发、吸附等物理、化学过程,发生了不可逆的结合. 在前期发现的基础上,针对2022年7月在广西壮族自治区河池市采集得到的陆地生态系统塑岩样品,进一步研究其在干湿循环情形下微塑料的释放与粒径分布特征. 研究表明,在干湿循环老化情形下,从塑岩中释放得到的微塑料的粒径分布可以被条件概率老化模型刻画. 从塑岩中剥离的低密度聚乙烯(LDPE)和聚丙烯(PP)塑料的破碎维数总体在1.5~2.5之间浮动,呈现出二维破碎的特征;LDPE的破碎过程存在先加剧后减缓的过程,但PP的破碎维数恒定在2附近,预示塑岩结合的PP塑料具有长期释放微塑料的能力. 除此之外,在塑岩释放的微塑料中,超过60%为具有较高迁移性的圆球状微塑料,其平均粒径显著低于其他形状,具有较高的迁移性,预示着潜在的生态风险. 需要指出的是,目前针对塑岩的相关报道对其胶结成岩过程以及在自然界中的长期环境行为仍不甚明确,后续研究需要对其在自然环境中的成岩过程、赋存规律与长期归趋开展进一步研究与观测.

     

  • 图  1  塑岩与地球关键带圈层的相互作用关系

    Figure  1.  Interaction of plastistone with spheres in the Earth′s Critical Zone

    图  2  塑岩表面形貌

    Figure  2.  Surface morphologies of plastistone

    图  3  塑岩与新塑料膜释放的微塑料粒径分布特征

    Figure  3.  Size distribution characteristics of microplastics generated from plastistone and fresh plastic films

    图  4  微塑料形状分析

    Figure  4.  Morphotype analysis of microplastics

    图  5  不同形状微塑料的平均粒径

    Figure  5.  Average sizes of microplastics with different morphotypes

    图  6  塑岩与新塑料膜的破碎维数

    Figure  6.  Fragmentation dimension of plastistone and fresh plastic films

    表  1  全球塑岩分布与成因

    Table  1.   Global presence of plastistones and mechanisms for their formation

    分布地区与塑岩结合的塑料类型塑料潜在来源塑岩成因数据来源
    巴西南里奥格兰德海滩 海洋垃圾冲刷 文献[8]
    美国夏威夷海滩 海洋垃圾冲刷 篝火燃烧 文献[11]
    秘鲁利马海滩 HDPE、PP 城市生活垃圾 垃圾燃烧 文献[12]
    中国广西壮族自治区 LDPE、PP 农膜与塑料袋使用 化学成键 文献[14]
    西班牙加纳利群岛海滩 PP、PE 海洋垃圾冲刷 混有塑料的石油粘附在礁石后部分蒸发 文献[16]
    巴西特林达迪岛海滩 PE 海洋垃圾冲刷 篝火燃烧 文献[17]
    孟加拉国考克斯巴扎尔海滩 HDPE、LDPE、PP、PET 城市生活垃圾 垃圾燃烧 文献[21]
    意大利吉廖岛海滩 PE 海洋垃圾冲刷 海浪拍打后物理结合 文献[22]
    葡萄牙马德拉岛海滩 HDPE、PP 海洋垃圾冲刷 海浪拍打后物理结合 文献[23]
    日本山口市海滩 PE、PP 城市生活垃圾 篝火燃烧 文献[24]
    印度安达曼群岛海滩 PE、PVC 海洋垃圾冲刷 篝火燃烧 文献[25]
    英国惠特桑德湾海滩 海洋垃圾冲刷 篝火燃烧 文献[26]
    下载: 导出CSV

    表  2  微塑料粒径分布条件概率老化模型拟合结果

    Table  2.   Conditional probability-controlled aging modeling of microplastics

    塑料类型老化次数范围参数λ/μmα破碎参数αR2
    新LDPE膜 1 0.052±0.011 0.96±0.06 0.98
    新LDPE膜 5 0.040±0.009 1.13±0.08 0.98
    新LDPE膜 10 0.064±0.021 0.89±0.10 0.94
    塑岩结合的LDPE塑料 1 0.067±0.019 0.93±0.09 0.96
    塑岩结合的LDPE塑料 5 0.051±0.009 1.08±0.06 0.99
    塑岩结合的LDPE塑料 10 0.044±0.016 1.15±0.13 0.96
    新PP膜 1 0.064±0.014 0.91±0.07 0.98
    新PP膜 5 0.050±0.018 1.12±0.13 0.95
    新PP膜 10 0.044±0.018 1.19±0.15 0.95
    塑岩结合的PP塑料 1 0.032±0.008 1.14±0.08 0.98
    塑岩结合的PP塑料 5 0.055±0.017 1.06±0.11 0.96
    塑岩结合的PP塑料 10 0.017±0.005 1.51±0.10 0.99
    下载: 导出CSV

    表  3  微塑料破碎维数拟合结果

    Table  3.   Fragmentation dimension modeling of microplastics

    塑料类型老化次数破碎维数DPR2
    新LDPE膜 1 1.77±0.14 <0.001 0.95
    新LDPE膜 5 2.08±0.27 <0.001 0.88
    新LDPE膜 10 1.67±0.28 <0.001 0.82
    塑岩结合的LDPE塑料 1 2.05±0.18 <0.001 0.93
    塑岩结合的LDPE塑料 5 2.52±0.27 <0.001 0.90
    塑岩结合的LDPE塑料 10 1.71±0.18 <0.001 0.94
    新PP膜 1 1.73±0.14 <0.001 0.95
    新PP膜 5 2.08±0.21 <0.001 0.92
    新PP膜 10 1.51±0.36 <0.001 0.81
    塑岩结合的PP塑料 1 2.06±0.24 <0.001 0.89
    塑岩结合的PP塑料 5 1.94±0.19 <0.001 0.92
    塑岩结合的PP塑料 10 2.06±0.28 0.002 0.93
    下载: 导出CSV
  • [1] LEWIS S L,MASLIN M A.Defining the Anthropocene[J].Nature,2015,519(7542):171-180. doi: 10.1038/nature14258
    [2] ZALASIEWICZ J,WATERS C,HEAD M J.Anthropocene:its stratigraphic basis[J].Nature,2017,541(7637):289.
    [3] ZALASIEWICZ J,WILLIAMS M,SMITH A,et al.Are we now living in the Anthropocene[J].GSA Today,2008,18(2):4. doi: 10.1130/GSAT01802A.1
    [4] WATERS C N,ZALASIEWICZ J,SUMMERHAYES C,et al.Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene Series:where and how to look for potential candidates[J].Earth-Science Reviews,2018,178:379-429. doi: 10.1016/j.earscirev.2017.12.016
    [5] 刘学,张志强,郑军卫,等.关于人类世问题研究的讨论[J].地球科学进展,2014,29(5):640-649. doi: 10.11867/j.issn.1001-8166.2014.05.0640

    LIU X,ZHANG Z Q,ZHENG J W,et al.Discussion on the Anthropocene research[J].Advances in Earth Science,2014,29(5):640-649. doi: 10.11867/j.issn.1001-8166.2014.05.0640
    [6] 舒良树.普通地质学[M].3版.北京:地质出版社,2010.
    [7] LUTGENS F K,TARBUCK E J.Essentials of geology[M].13th ed.New York,USA:Pearson,2018.
    [8] FERNANDINO G,ELLIFF C I,FRANCISCHINI H,et al.Anthropoquinas:first description of plastics and other man-made materials in recently formed coastal sedimentary rocks in the southern hemisphere[J].Marine Pollution Bulletin,2020,154:111044. doi: 10.1016/j.marpolbul.2020.111044
    [9] WILKINSON B H.Humans as geologic agents:a deep-time perspective[J].Geology,2005,33(3):161. doi: 10.1130/G21108.1
    [10] 刘艳,宋瑞明,杨阳,等.贵州砂页岩母质黄壤镉吸附及表面络合模型研究[J].环境科学研究,2022,35(7):1715-1724.

    LIU Y,SONG R M,YANG Y,et al.Cadmium adsorption and surface complexation model of sand shale yellow soil in Guizhou Province[J].Research of Environmental Sciences,2022,35(7):1715-1724.
    [11] CORCORAN P L,MOORE C J,JAZVAC K.An anthropogenic marker horizon in the future rock record[J].GSA Today,2014,6(24):4-8.
    [12] DE-LA-TORRE G E,PIZARRO-ORTEGA C I,DIOSES-SALINAS D C,et al.First record of plastiglomerates,pyroplastics,and plasticrusts in South America[J].Science of the Total Environment,2022,833:155179. doi: 10.1016/j.scitotenv.2022.155179
    [13] GESTOSO I,CACABELOS E,RAMALHOSA P,et al.Plasticrusts:a new potential threat in the Anthropocene's rocky shores[J].Science of the Total Environment,2019,687:413-415. doi: 10.1016/j.scitotenv.2019.06.123
    [14] WANG L W,BANK M S,RINKLEBE J,et al.Plastic-rock complexes as hotspots for microplastic generation[J].Environmental Science & Technology,2023,57(17):7009-7017.
    [15] CORCORAN P L,JAZVAC K.The consequence that is plastiglomerate[J].Nature Reviews Earth & Environment,2020,1(1):6-7.
    [16] DOMÍNGUEZ-HERNÁNDEZ C,VILLANOVA-SOLANO C,SEVILLANO-GONZÁLEZ M,et al.Plastitar:a new threat for coastal environments[J].Science of the Total Environment,2022,839:156261. doi: 10.1016/j.scitotenv.2022.156261
    [17] SANTOS F A,DIÓRIO G R,GUEDES C C F,et al.Plastic debris forms:rock analogues emerging from marine pollution[J].Marine Pollution Bulletin,2022,182:114031. doi: 10.1016/j.marpolbul.2022.114031
    [18] BOURZAC K.Plastic waste found chemically bonded to rocks in China[J/OL].Nature,2023-04-12[2023-06-23].https://www.nature.com/articles/d41586-023-01037-6.
    [19] HÄUSLER H.Did anthropogeology anticipate the idea of the Anthropocene?[J].The Anthropocene Review,2018,5(1):69-86. doi: 10.1177/2053019617742169
    [20] 杨伦,刘少峰,王家生.普通地质学简明教程[M].武汉:中国地质大学出版社,1998.
    [21] RAKIB M R J,DE-LA-TORRE G E,JOLLY Y N,et al.First record of plastiglomerate and pyroplastic pollution in the world's longest natural beach[J].Science of the Total Environment,2023,891:164369. doi: 10.1016/j.scitotenv.2023.164369
    [22] EHLERS S M,ELLRICH J A.First record of ‘plasticrusts’ and ‘pyroplastic’ from the Mediterranean Sea[J].Marine Pollution Bulletin,2020,151:110845. doi: 10.1016/j.marpolbul.2019.110845
    [23] EHLERS S M,ELLRICH J A,GESTOSO I.Plasticrusts derive from maritime ropes scouring across raspy rocks[J].Marine Pollution Bulletin,2021,172:112841. doi: 10.1016/j.marpolbul.2021.112841
    [24] FURUKUMA S,ELLRICH J A,EHLERS S M.Frequent observations of novel plastic forms in the Ariho River Estuary,Honshu,Japan[J].Science of the Total Environment,2022,848:157638. doi: 10.1016/j.scitotenv.2022.157638
    [25] GOSWAMI P,BHADURY P.First record of an Anthropocene marker plastiglomerate in Andaman Island,India[J].Marine Pollution Bulletin,2023,190:114802. doi: 10.1016/j.marpolbul.2023.114802
    [26] TURNER A,WALLERSTEIN C,ARNOLD R,et al.Marine pollution from pyroplastics[J].Science of the Total Environment,2019,694:133610. doi: 10.1016/j.scitotenv.2019.133610
    [27] YANG M,ZHANG B Y,CHEN X J,et al.Transport of microplastic and dispersed oil co-contaminants in the marine environment[J].Environmental Science & Technology,2023,57(14):5633-5645.
    [28] 杨启军.沉积岩岩石学[M].北京:地质出版社,2018.
    [29] BANWART S A,NIKOLAIDIS N P,ZHU Y G,et al.Soil functions:connecting Earth's Critical Zone[J].Annual Review of Earth and Planetary Sciences,2019,47:333-359. doi: 10.1146/annurev-earth-063016-020544
    [30] 朱永官,李刚,张甘霖,等.土壤安全:从地球关键带到生态系统服务[J].地理学报,2015,70(12):1859-1869. doi: 10.11821/dlxb201512001

    ZHU Y G,LI G,ZHANG G L,et al.Soil security:from Earth's critical zone to ecosystem services[J].Acta Geographica Sinica,2015,70(12):1859-1869. doi: 10.11821/dlxb201512001
    [31] YANG J,YANG Y,WU W M,et al.Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J].Environmental Science & Technology,2014,48(23):13776-13784.
    [32] KOOI M,KOELMANS A A.Simplifying microplastic via continuous probability distributions for size,shape,and density[J].Environmental Science & Technology Letters,2019,6(9):551-557.
    [33] WANG L W,LI P F,ZHANG Q,et al.Modeling the conditional fragmentation-induced microplastic distribution[J].Environmental Science & Technology,2021,55(9):6012-6021.
    [34] CÓZAR A,ECHEVARRÍA F,GONZÁLEZ-GORDILLO J I,et al.Plastic debris in the open ocean[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(28):10239-10244.
    [35] XU D Y,GAO B,WAN X H,et al.Influence of catastrophic flood on microplastics organization in surface water of the Three Gorges Reservoir,China[J].Water Research,2022,211:118018. doi: 10.1016/j.watres.2021.118018
    [36] ZHANG M Y,LIU L H,XU D Y,et al.Small-sized microplastics (<500 μm) in roadside soils of Beijing,China:accumulation,stability,and human exposure risk[J].Environmental Pollution,2022,304:119121. doi: 10.1016/j.envpol.2022.119121
    [37] NIU J Q,GAO B,WU W Q,et al.Occurrence,stability and source identification of small size microplastics in the Jiayan Reservoir,China[J].Science of the Total Environment,2022,807:150832. doi: 10.1016/j.scitotenv.2021.150832
    [38] O'CONNOR D,PAN S Z,SHEN Z T,et al.Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J].Environmental Pollution,2019,249:527-534. doi: 10.1016/j.envpol.2019.03.092
    [39] GAO J,PAN S Z,LI P F,et al.Vertical migration of microplastics in porous media:multiple controlling factors under wet-dry cycling[J].Journal of Hazardous Materials,2021,419:126413. doi: 10.1016/j.jhazmat.2021.126413
    [40] SORASAN C,EDO C,GONZÁLEZ-PLEITER M,et al.Ageing and fragmentation of marine microplastics[J].Science of the Total Environment,2022,827:154438. doi: 10.1016/j.scitotenv.2022.154438
    [41] SHRIVASTAVA A.Introduction to plastics engineering[M].Norwich,USA:William Andrew,2018.
    [42] GRAUSE G,CHIEN M F,INOUE C.Changes during the weathering of polyolefins[J].Polymer Degradation and Stability,2020,181:109364. doi: 10.1016/j.polymdegradstab.2020.109364
    [43] LEHMANN A,FITSCHEN K,RILLIG M.Abiotic and biotic factors influencing the effect of microplastic on soil aggregation[J].Soil Systems,2019,3(1):21. doi: 10.3390/soilsystems3010021
    [44] SU L,XIONG X,ZHANG Y L,et al.Global transportation of plastics and microplastics:a critical review of pathways and influences[J].Science of the Total Environment,2022,831:154884. doi: 10.1016/j.scitotenv.2022.154884
    [45] LI L Z,LUO Y M,LI R J,et al.Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J].Nature Sustainability,2020,3(11):929-937. doi: 10.1038/s41893-020-0567-9
    [46] YU Z F,SONG S,XU X L,et al.Sources,migration,accumulation and influence of microplastics in terrestrial plant communities[J].Environmental and Experimental Botany,2021,192:104635. doi: 10.1016/j.envexpbot.2021.104635
    [47] ZHOU P,WANG L,GAO J,et al.Nanoplastic-plant interaction and implications for soil health[J].Soil Use and Management,2023,39(1):13-42. doi: 10.1111/sum.12868
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  101
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-11
  • 网络出版日期:  2023-07-13

目录

    /

    返回文章
    返回