留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业园区VOCs光离子化气体检测技术适用性研究

蔡云飞 段玉森 党亚婷 陈斐 伏晴艳 徐薇 林长青 高松

蔡云飞, 段玉森, 党亚婷, 陈斐, 伏晴艳, 徐薇, 林长青, 高松. 工业园区VOCs光离子化气体检测技术适用性研究[J]. 环境科学研究, 2023, 36(9): 1676-1683. doi: 10.13198/j.issn.1001-6929.2023.07.15
引用本文: 蔡云飞, 段玉森, 党亚婷, 陈斐, 伏晴艳, 徐薇, 林长青, 高松. 工业园区VOCs光离子化气体检测技术适用性研究[J]. 环境科学研究, 2023, 36(9): 1676-1683. doi: 10.13198/j.issn.1001-6929.2023.07.15
CAI Yunfei, DUAN Yusen, DANG Yating, CHEN Fei, FU Qingyan, XU Wei, LIN Changqing, GAO Song. Study on the Applicability of Photoionization Detection Technology for VOCs Monitoring in Industrial Areas[J]. Research of Environmental Sciences, 2023, 36(9): 1676-1683. doi: 10.13198/j.issn.1001-6929.2023.07.15
Citation: CAI Yunfei, DUAN Yusen, DANG Yating, CHEN Fei, FU Qingyan, XU Wei, LIN Changqing, GAO Song. Study on the Applicability of Photoionization Detection Technology for VOCs Monitoring in Industrial Areas[J]. Research of Environmental Sciences, 2023, 36(9): 1676-1683. doi: 10.13198/j.issn.1001-6929.2023.07.15

工业园区VOCs光离子化气体检测技术适用性研究

doi: 10.13198/j.issn.1001-6929.2023.07.15
基金项目: 上海市科技创新行动计划项目(No.20dz1204000)
详细信息
    作者简介:

    蔡云飞(1980-),男,上海人,高级工程师,主要从事环境监测与传感器研究,caiyf@sheemc.cn

    通讯作者:

    高松(1978-),男,江苏启东人,高级工程师,博士,主要从事环境监测与人工智能研究,njulegao@163.com

  • 中图分类号: X815

Study on the Applicability of Photoionization Detection Technology for VOCs Monitoring in Industrial Areas

Funds: Shanghai Science and Technology Innovation Action Plan, China (No.20dz1204000)
  • 摘要: 目前在使用光离子化气体检测器(PID)设备对工业园区挥发性有机物(VOCs)进行监测过程中,设备间监测数据普遍存在偏差大、准确度和稳定性不足等问题,影响了园区VOCs的监测评价与管控. 为探究偏差产生的原因,本文选取了市售4个品牌的8套PID监测设备,在工业园区进行实地测试,对其适用性进行研究. 结果表明:① 在安装了除湿装置后,PID设备在高湿阶段监测正常,同时通过在现场对不同湿度标准气体的测试可知,除湿装置对测试数据的准确性无影响. 因此,在高湿度地区采用除湿装置,可提高PID设备监测数据的准确性. ② 环境空气实测时,虽然与气相色谱仪/氢火焰离子化检测器(GC-FID)设备原理不同,但经过一系列改进措施后,8台PID设备测得总VOCs体积分数变化趋势与GC-FID设备基本一致;同时,同品牌设备间平行性较好,各PID设备与GC-FID设备所测结果的相关系数均在0.82以上,最高可达0.96,但在GC-FID设备监测的VOCs体积分数<50×10−9时,二者相关性不理想. ③ 针对工业园区VOCs监测,本研究提出了将PID设备和GC-FID设备监测数据的比对计算方法,与将PID设备和GC-FID设备的监测数据经过简单求和后进行比对的方法相比,前者的相关性优于后者. 研究显示,可通过规定PID设备在工业园区进行报警的浓度,明确与常用设备比对的内容以及增加冷凝装置等方式来提高PID设备的监测准确性,从而提升工业园区O3前体物的管控效果.

     

  • 图  1  PID设备干湿标准气体测试结果

    Figure  1.  Dry and wet standard gas test results of PID equipment

    图  2  设备A与设备S数据之间平行性分析

    Figure  2.  Parallelism between equipment A and equipment S

    图  3  GC-FID设备与PID设备结果的玫瑰风向图

    Figure  3.  Rose wind diagram for GC-FID equipment and PID equipment

    图  4  报警时段PID设备和GC-FID设备所测结果的分布趋势

    Figure  4.  Trend of PID equipment and GC-FID equipment concentrations during alarms

    表  1  设备测试期间的性能评估结果

    Table  1.   Performance evaluation results of the equipment during the comparison period

    设备名称有效数据量 体积分数平均值/10−9相关系数(与GC-FID设备所测数据)斜率截距均方根误差/10−9标准偏差/10−9
    GC-FID 915 23.4±36.4
    Y-285850.4±34.70.870.94−22.930.938.0
    Z-191574.3±5.70.966.07−427.859.636.4
    A-191528.2±38.50.900.82−3.319.438.5
    A-291528.2±38.50.890.84−0.218.737.5
    A-391533.5±40.20.920.83−4.518.738.7
    S-191522.5±19.00.821.58−12.123.329.0
    S-291524.4±19.20.831.58−15.222.929.1
    S-391520.7±18.80.841.63−10.323.129.0
    下载: 导出CSV

    表  2  设备比对期间GC-FID所测体积分数小于50×10−9时的性能评价结果

    Table  2.   Performance evaluation results of the equipments when GC-FID monitoring data smaller than 50×10−9 during the comparison period

    设备名称有效数据量体积分数平均值/10−9相关系数(与GC-FID设备数据)斜率截距均方根误差/10−9标准偏差/10−9
    GC-FID 811 13.5±11.6
    Y-275441.1±17.50.720.48−6.028.820.2
    Z-181172.8±1.90.834.93−345.260.230.8
    A-181118.6±15.30.780.541.513.815.1
    A-281118.6±15.30.680.513.912.413.8
    A-381123.0±17.40.790.531.314.315.5
    S-181118.0±11.10.440.465.212.811.6
    S-281119.8±11.20.460.483.913.411.8
    S-381116.2±10.70.460.505.311.911.2
    下载: 导出CSV

    表  3  报警时段内PID设备与GC-FID设备数据比较

    Table  3.   Comparison of PID equipment and GC-FID equipment during the alarm period

    时段GC-FID设备所测
    体积分数/10−9
    A-3设备所测
    体积分数/10−9
    A-3设备整小时
    体积分数/10−9
    A-3设备体积分数
    最大值出现时刻
    A-3设备体积分数
    最大值/10−9
    12月15日03:00—03:5969.271.270.803:00105.0
    12月15日04:00—04:5974.3110.8103.904:21132.0
    12月15日05:00—05:59162.2142.2136.605:33169.5
    12月15日06:00—06:59139.6152.2162.906:10227.0
    12月15日07:00—07:59201.0242.6226.807:55303.5
    12月15日08:00—08:5972.577.6122.408:00275.0
    12月15日09:00—09:5936.337.459.709:00337.0
    下载: 导出CSV
  • [1] JENKIN M E,CLEMITSHAW K C.Ozone and other secondary photochemical pollutants:chemical processes governing their formation in the planetary boundary layer[J].Atmospheric Environment,2000,34(16):2499-2527. doi: 10.1016/S1352-2310(99)00478-1
    [2] GENG F H,TIE X X,XU J M,et al.Characterizations of ozone,NOx,and VOCs measured in Shanghai,China[J].Atmospheric Environment,2008,42(29):6873-6883. doi: 10.1016/j.atmosenv.2008.05.045
    [3] SUN J,WU F K,HU B,et al.VOC characteristics,emissions and contributions to SOA formation during hazy episodes[J].Atmospheric Environment,2016,141:560-570. doi: 10.1016/j.atmosenv.2016.06.060
    [4] WANG J F,YE J H,ZHANG Q,et al.Aqueous production of secondary organic aerosol from fossil-fuel emissions in winter Beijing haze[J].Proceedings of the National Academy of Sciences of the United States of America,2021,118(8):e2022179118.
    [5] 王可鑫,张鑫,纪元元,等.煤化工产业园区挥发性有机物污染特征及其对大气复合污染的贡献[J].环境科学研究,2023,36(2):294-304. doi: 10.13198/j.issn.1001-6929.2022.12.04

    WANG K X,ZHANG X,JI Y Y,et al.Characterization of ambient VOCs in a coal chemical industry park and their contribution to complex air pollution[J].Research of Environmental Sciences,2023,36(2):294-304. doi: 10.13198/j.issn.1001-6929.2022.12.04
    [6] 张博韬,景宽,王琴,等.2018年夏季某石化工业区VOCs浓度特征及活性物种[J].环境科学研究,2021,34(6):1318-1327. doi: 10.13198/j.issn.1001-6929.2021.03.07

    ZHANG B T,JING K,WANG Q,et al.Characteristics of VOCs concentrations and active species in a petrochemical industrial area in the summer of 2018[J].Research of Environmental Sciences,2021,34(6):1318-1327. doi: 10.13198/j.issn.1001-6929.2021.03.07
    [7] BADJAGBO K,SAUVÉ S,MOORE S.Real-time continuous monitoring methods for airborne VOCs[J].TrAC Trends in Analytical Chemistry,2007,26(9):931-940. doi: 10.1016/j.trac.2007.07.004
    [8] MORAWSKA L,THAI P K,LIU X T,et al.Applications of sensing technologies for air quality monitoring and exposure assessment:how far have they gone?[J].Environment International,2018,116:286-299. doi: 10.1016/j.envint.2018.04.018
    [9] LEWIS A C,LEE J D,EDWARDS P M,et al.Evaluating the performance of low cost chemical sensors for air pollution research[J].Faraday Discussions,2016,189:85-103. doi: 10.1039/C5FD00201J
    [10] CLEMENTS A L,REECE S,CONNER T,et al.Observed data quality concerns involving air sensors[J].Atmospheric Environment:X,2019,3:100034. doi: 10.1016/j.aeaoa.2019.100034
    [11] FEENSTRA B,PAPAPOSTOLOU V,HASHEMINASSAB S,et al.Performance evaluation of twelve PM2.5 sensors at an ambient air monitoring site[J].Atmospheric Environment,2019,216:116946. doi: 10.1016/j.atmosenv.2019.116946
    [12] COLLIER-OXANDALE A,FEENSTRA B,PAPAPOSTOLOU V,et al.Field and laboratory performance evaluations of 28 gas-phase air quality sensors by the AQ-SPEC program[J].Atmospheric Environment,2020,220:117092. doi: 10.1016/j.atmosenv.2019.117092
    [13] MacDONALD M,THOMA E,GEORGE I,et al.Demonstration of VOC fenceline sensors and canister grab sampling near chemical facilities in Louisville,Kentucky[J].Sensors,2022,22(9):3480. doi: 10.3390/s22093480
    [14] FORNARO A,VALTANCOLI E,ARGENTO F,et al.Improvement of sensor technology for monitoring VOCs in harbour and maritime areas:use case and first findings[J].Chemical Engineering Transactions,2021,85:1-6.
    [15] BÍLEK J,MARŠOLEK P,BÍLEK O,et al.Field test of mini photoionization detector-based sensors:monitoring of volatile organic pollutants in ambient air[J].Environments,2022,9(4):49. doi: 10.3390/environments9040049
    [16] YEO J H,CHOI K M.Comparative analysis between direct-reading meter of PID and GC-FID using the active type air sampler for VOCs measurement[J].Journal of Korean Society of Occupational and Environmental Hygiene,2016,26(3):301-306. doi: 10.15269/JKSOEH.2016.26.3.301
    [17] 生态环境部.环办监测〔2017〕2027号 大气PM2.5网格化监测系统质保质控与运行技术指南(试行) [S].北京:中国环境科学出版社,2018.
    [18] 生态环境部.环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法:HJ 1010—2018[S].北京:中国环境出版社,2018.
    [19] Honeywell International Inc.Correction factors,ionization energies,and calibration characteristics for 3GPID+1 monitors[EB/OL].State of New Jersey:Honeywell International Inc,(2021-05-25)[2023-02-05].https://prod-edam.honeywell.com/content/dam/honeywell-edam/sps/his/zh-cn/products/gas-and-flame-detection/documents/sps-his-tn-106c-3gpid.pdf?download=false.
    [20] XU W,CAI Y F,GAO S,et al.New understanding of miniaturized VOCs monitoring device:PID-type sensors performance evaluations in ambient air[J].Sensors and Actuators B:Chemical,2021,330:129285. doi: 10.1016/j.snb.2020.129285
    [21] SPINELLE L,GERBOLES M,KOK G,et al.Performance evaluation of BTEX sensors and devices within the EURAMET key-VOCs project[C].Paris:MDP,2017.
    [22] Honeywell International Inc.Humidity filtering ii tube for pid measurements in humid environments[EB/OL].State of New Jersey:Honeywell International Inc,(2021-05-25)[2023-02-05].https://prod-edam.honeywell.com/content/dam/honeywell-edam/sps/his/zh-cn/products/gas-and-flame-detection/documents/Technical-Note-178_Humidity-Filtering-II-Tube-for-PID-Measurements-in-Humid-Environments_06-10.pdf?download=false.
    [23] United States Environmental Protection Agency.The enhanced air sensor guidebook[R].Washington DC:Center for Environmental Measurement and Modeling,Office of Research and Development,2022.
    [24] United States Environmental Protection Agency.Air Sensor Guidebook[R].Washington DC:National Exposure Research Laboratory Office of Research and Development,2014.
    [25] 刘保献,姜南,金萌,等.光散射原理的大气PM2.5小型传感器监测性能评估研究[J].环境科学研究,2023,36(3):510-518.

    LIU B X,JIANG N,JIN M,et al.Study on monitoring performance evaluation of atmospheric PM2.5 miniature sensor based on light scattering principle[J].Research of Environmental Sciences,2023,36(3):510-518.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  22
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-06-18
  • 网络出版日期:  2023-07-14

目录

    /

    返回文章
    返回