Digital Economy and Carbon Emission Performance: A Case Study of 276 Cities in China
-
摘要: 数字经济是推动城市低碳转型的重要动力,也是实现碳达峰、碳中和目标的关键路径. 该研究以中国276个地级及以上城市为研究对象,利用改进的熵值法测算各城市数字经济发展水平,并将碳排放绩效分解为碳排放强度和碳排放效率,在此基础上综合运用面板固定效应模型和中介效应模型剖析数字经济对碳排放绩效的影响及其作用机制. 结果表明:①数字经济发展水平每提高1%,碳排放强度将显著下降0.180%,碳排放效率将显著提高0.276%,即数字经济能显著提高碳排放绩效. ②数字经济对碳排放绩效的影响存在城市区位和城市规模的异质性,东部城市和大城市数字经济的作用强度更大. ③数字经济可通过提高经济发展水平、优化产业结构以及加速技术创新显著提高碳排放绩效. 研究显示,数字经济不仅能直接显著提升碳排放绩效,而且可通过规模效应、结构效应和技术效应间接影响碳排放绩效. 因此,未来仍需加快数字经济高质量发展,尤其增强科技创新和产业升级对碳排放绩效的传导作用;同时根据城市规模和资源禀赋,建立健全的差异化碳减排机制.Abstract: The digital economy is an important driving force to promote urban low-carbon transformation, and it is also a key path to achieve the goal of carbon peaking and carbon neutrality. This study takes 276 cities at prefecture level and above in China as the research object, uses the improved entropy method to measure the development level of the digital economy in each city, and divides the carbon emission performance into carbon emission intensity and carbon emission efficiency. On the basis, the panel fixed effect model and mediation effect model are comprehensively used to analyze the impact of digital economy on carbon emission performance and its mechanism. The results show that: (1) For every 1% increase in the development level of digital economy, carbon emission intensity will be significantly reduced by 0.180%, and carbon emission efficiency will be significantly increased by 0.276%, that is, digital economy can significantly improve the carbon emission performance. (2) The impact of digital economy on carbon emission performance is heterogeneous in city location and city size, and the effect of digital economy is greater in the eastern cities and megacities. (3) Digital economy can significantly enhance carbon emission performance by raising the level of economic development, optimizing industrial structure and accelerating technological innovation. The research shows that the digital economy can not only significantly boost carbon emission performance directly, but also indirectly affect carbon emission performance through scale effect, structure effect and technology effect. Therefore, it is still necessary to expedite the high-quality development of digital economy, especially to strengthen the transmission effect of technological innovation and industrial upgrading on carbon emission performance. At the same time, a differentiated carbon emission reduction mechanism needs to be established and improved based on city size and resource endowment.
-
表 1 数字经济发展水平评价指标体系
Table 1. Evaluation index system of the level of digital economy
一级指标 二级指标 指标含义 单位 权重 方向 数
字
经
济
发
展
水
平数字基础 移动电话普及率 % 0.036 4 + 互联网普及率 % 0.012 6 + 互联网宽带接入用户 104户 0.082 3 + 专利申请量 件 0.126 3 + 人力资源 每万人中大学生数量 人 0.085 5 + 信息业从业人员数占从业人员总数的比例 % 0.044 9 + 普及应用 人均电信业务总量 104元 0.075 6 + 人均邮电业务总量 104元 0.075 7 + 公路货运量 104 t 0.065 0 + 发展环境 人均GDP 104元 0.028 3 + 人均工资 元 0.015 1 + 教育支出占GDP的比重 % 0.032 2 + 科技支出占GDP的比重 % 0.061 0 + 普通高等院校数量 所 0.182 1 + 市场化指数 0.025 0 + 数字普惠金融 数字金融覆盖广度 0.017 4 + 数字金融使用深度 0.017 3 + 普惠金融数字化程度 0.017 3 + 表 2 变量的描述性统计
Table 2. Descriptive statistics of variables
项目 单位 样本量 算数平均值 方差 最小值 最大值 VIF值 被解释变量 碳排放强度(ln Cei) 104 t 2 760 0.703 0.479 −1.281 2.095 碳排放效率(ln Cee) 2 760 −0.639 0.284 −1.814 0 解释变量 数字经济发展水平(ln Dig) 2 760 −2.381 0.614 −3.798 0.569 4.26 中介变量 经济发展水平(ln Pgdp) 104元 2 760 −0.778 0.559 −2.422 1.066 2.83 产业结构(ln Is) 2 760 −0.879 0.257 −2.288 −0.176 2.12 技术创新水平(ln Tec) 项 2 760 −1.576 0.772 −4.357 1.842 1.47 控制变量 能源强度(ln Ei) kW·h/元 2 760 −3.072 0.757 −6.870 −0.153 1.24 人口密度(ln Pi) 人/km2 2 760 −1.133 0.952 −5.172 2.178 1.58 政府分权化水平(ln Gover) % 2 760 −0.755 0.530 −3.582 0.980 1.81 对外开放程度(ln Open) % 2 760 2.623 1.347 −3.832 5.700 1.40 交通配置水平(ln Tra) m2 2 760 2.779 0.431 0.315 4.096 1.10 表 3 随机效应模型和固定效应模型的回归结果
Table 3. Regression results of random effect model and fixed effect model
变量 随机效应模型 固定效应模型 ln Cei ln Cee ln Cei ln Cee ln Dig −0.189***
(0.000)0.298***
(0.000)−0.180***
(0.000)0.276***
(0.000)ln Ei 0.155***
(0.000)−0.123***
(0.000)0.150***
(0.000)−0.155***
(0.000)ln Pi −0.125***
(0.000)−0.015
(0.172)−0.127**
(0.018)−0.105*
(0.090)ln Gover −0.046***
(0.001)0.036***
(0.007)−0.049***
(0.000)0.068***
(0.000)ln Open 0.016***
(0.002)0.009
(0.112)0.017***
(0.002)−0.004
(0.570)ln Tra 0.057***
(0.002)0.097***
(0.000)0.048**
(0.016)0.062***
(0.007)常数项 0.378***
(0.000)−0.442***
(0.000)0.403***
(0.000)−0.639***
(0.000)城市固定效应 否 否 是 是 R2 0.151 0.126 0.151 0.146 样本数量 2 760 2 760 2 760 2 760 注:***、**、*分别表示在 0.01、0.05、0.1 的置信度上统计显著. 括号内为P值. 下同. 表 4 城市区位异质性分析
Table 4. Analysis of city location heterogeneity
变量 东部地区 中部地区 西部地区 东北地区 ln Cei ln Cee ln Cei ln Cee ln Cei ln Cee ln Cei ln Cee ln Dig −0.241***
(0.000)0.286***
(0.000)−0.179***
(0.000)0.336***
(0.000)−0.168***
(0.000)0.269***
(0.000)−0.149*
(0.074)0.142***
(0.000)常数项 0.554***
(0.000)−0.236***
(0.004)0.620***
(0.001)−0.485***
(0.000)0.647**
(0.011)−1.218***
(0.000)−0.766
(0.222)−1.163***
(0.000)控制变量 是 是 是 是 是 是 是 是 城市固定效应 是 是 是 是 是 是 是 是 R2 0.522 0.505 0.142 0.367 0.086 0.220 0.127 0.374 样本数量 860 860 790 790 740 740 370 370 表 5 城市规模异质性分析
Table 5. Analysis of city size heterogeneity
变量 大城市 中小城市 ln Cei ln Cee ln Cei ln Cee ln Dig −0.198***
(0.000)0.332***
(0.000)−0.166***
(0.000)0.276***
(0.000)常数项 0.373***
(0.001)−0.435***
(0.000)0.591***
(0.000)−0.752***
(0.000)控制变量 是 是 是 是 城市固定效应 是 是 是 是 R2 0.205 0.505 0.057 0.322 样本数量 1 000 1 000 1 760 1 760 表 6 稳健性检验结果
Table 6. Results of robustness test
变量 内生性检验 剔除直辖市 剔除极端值 ln Cei ln Cee ln Cei ln Cee ln Cei ln Cee ln Dig −0.295***
(0.000)0.306***
(0.000)−0.179***
(0.000)0.293***
(0.000)−0.189***
(0.000)0.293***
(0.000)常数项 0.371***
(0.000)−0.405***
(0.000)0.400***
(0.000)−0.633***
(0.000)0.416***
(0.000)−0.651***
(0.000)控制变量 是 是 是 是 是 是 城市固定效应 是 是 是 是 是 是 C-D Wald-F 224.151 224.151 R2 0.342 0.342 0.215 0.444 0.230 0.461 样本数量 2 484 2 484 2 720 2 720 2 760 2 760 注:C-D Wald-F为弱工具变量检验统计量. 表 7 数字经济对碳排放强度的中介效应检验结果
Table 7. Results of the mediation effect test of digital economy on carbon emission intensity
变量 ln Pgdp ln Is ln Tec ln Cei ln Cei ln Cei ln Dig 0.582***
(0.000)0.049***
(0.000)1.623***
(0.000)0.076***
(0.000)−0.208***
(0.000)−0.170***
(0.000)ln Pgdp −0.440***
(0.000)ln Is 0.575***
(0.000)ln Tec −0.006
(0.562)常数项 0.446***
(0.000)1.992***
(0.000)6.839***
(0.000)0.560***
(0.000)−0.741
(0.197)0.445***
(0.000)控制变量 是 是 是 是 是 是 城市固定效应 是 是 是 是 是 是 R2 0.590 0.664 0.677 0.209 0.152 0.151 样本数量 2 760 2 760 2 760 2 760 2 760 2 760 Sobel检验 −0.037*
(0.053)表 8 数字经济对碳排放效率的中介效应检验结果
Table 8. Results of the mediation effect test of digital economy on carbon emission efficiency
变量 ln Pgdp ln Is ln Tec ln Cee ln Cee ln Cee ln Dig 0.582***
(0.000)0.049***
(0.000)1.623***
(0.000)0.062***
(0.000)0.226***
(0.000)0.242***
(0.000)ln Pgdp 0.368***
(0.000)ln Is 1.034***
(0.002)ln Tec 0.021*
(0.078)常数项 0.446***
(0.000)1.992***
(0.000)6.839***
(0.000)−0.803***
(0.000)−2.699***
(0.000)−0.784***
(0.000)控制变量 是 是 是 是 是 是 城市固定效应 是 是 是 是 是 是 R2 0.590 0.664 0.677 0.199 0.149 0.147 样本数量 2 760 2 760 2 760 2 760 2 760 2 760 -
[1] 杨静媛,张明,多玲花,等.江西省土地利用碳排放空间格局及碳平衡分区[J].环境科学研究,2022,35(10):2312-2321.YANG J Y,ZHANG M,DUO L H,et al.Spatial pattern of land use carbon emissions and carbon balance zoning in Jiangxi Province[J].Research of Environmental Sciences,2022,35(10):2312-2321. [2] 徐维祥,周建平,刘程军.数字经济发展对城市碳排放影响的空间效应[J].地理研究,2022,41(1):111-129.XU W X,ZHOU J P,LIU C J.The impact of digital economy on urban carbon emissions:based on the analysis of spatial effects[J].Geographical Research,2022,41(1):111-129. [3] CHEN L J.How CO2 emissions respond to changes in government size and level of digitalization?evidence from the BRICS countries[J].Environmental Science and Pollution Research,2021,29(1):457-467. [4] 王少剑,高爽,黄永源,等.基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J].地理学报,2020,75(6):1316-1330. doi: 10.11821/dlxb202006016WANG S J,GAO S,HUANG Y Y,et al.Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on the super-efficiency SBM model[J].Acta Geographica Sinica,2020,75(6):1316-1330. doi: 10.11821/dlxb202006016 [5] 周迪,刘奕淳.中国碳交易试点政策对城市碳排放绩效的影响及机制[J].中国环境科学,2020,40(1):453-464. doi: 10.3969/j.issn.1000-6923.2020.01.050ZHOU D,LIU Y C.Impact of China´s carbon emission trading policy on the performance of urban carbon emission and its mechanism[J].China Environmental Science,2020,40(1):453-464. doi: 10.3969/j.issn.1000-6923.2020.01.050 [6] 周迪,周丰年,王雪芹.低碳试点政策对城市碳排放绩效的影响评估及机制分析[J].资源科学,2019,41(3):546-556.ZHOU D,ZHOU F N,WANG X Q.Impact of low-carbon pilot policy on the performance of urban carbon emissions and its mechanism[J].Resources Science,2019,41(3):546-556. [7] 于向宇,陈会英,李跃.基于合成控制法的碳交易机制对碳绩效的影响[J].中国人口·资源与环境,2021,31(4):51-61.YU X Y,CHEN H Y,LI Y.Impact of carbon emission trading mechanism on carbon performance based on synthetic control method[J].China Population,Resources and Environment,2021,31(4):51-61. [8] 蒋培培,王远,罗进,等.长江与黄河流域碳排放效率时空演变特征及路径识别探究[J].环境科学研究,2022,35(7):1743-1751. doi: 10.13198/j.issn.1001-6929.2022.04.06JIANG P P,WANG Y,LUO J,et al.Comparative study of spatial-temporal evolution and growth path of carbon emissions efficiency in Yangtze River Basin and Yellow River Basin[J].Research of Environmental Sciences,2022,35(7):1743-1751. doi: 10.13198/j.issn.1001-6929.2022.04.06 [9] 陈飞,沈世芳,李永贺,等.城市密度对空间碳绩效的影响:以上海市为例[J].城市问题,2022(2):96-103.CHEN F,SHEN S F,LI Y H,et al.The impact of urban density on spatial carbon performance:a case study on Shanghai[J].Urban Problems,2022(2):96-103. [10] 曹珂,屈小娥.中国区域碳排放绩效评估及减碳潜力研究[J].中国人口·资源与环境,2014,24(8):24-32. doi: 10.3969/j.issn.1002-2104.2014.08.004CAO K,QU X E.Research on regional carbon emissions performance evaluation and carbon reduction potential in China[J].China Population,Resources and Environment,2014,24(8):24-32. doi: 10.3969/j.issn.1002-2104.2014.08.004 [11] LV Y L,LIU J G,CHENG J Q,et al.The persistent and transient total factor carbon emission performance and its economic determinants:evidence from China´s province-level panel data[J].Journal of Cleaner Production,2021,316:128198. doi: 10.1016/j.jclepro.2021.128198 [12] 王智新,梁翠,赵景峰,等.科技投入效率、产学合作研发与全要素碳排放绩效[J].中国人口·资源与环境,2013,23(7):100-103. doi: 10.3969/j.issn.1002-2104.2013.07.015WANG Z X,LIANG C,ZHAO J F,et al.Investment in science and technology efficiency,industry-university collaboration R&D and total factor carbon emission performance[J].China Population,Resources and Environment,2013,23(7):100-103. doi: 10.3969/j.issn.1002-2104.2013.07.015 [13] 张悦,王晶晶,程钰.中国工业碳排放绩效时空特征及技术创新影响机制[J].资源科学,2022,44(7):1435-1448.ZHANG Y,WANG J J,CHENG Y.Spatiotemporal characteristics of China′s industrial carbon emission performance and influence mechanism of technological innovation[J].Resources Science,2022,44(7):1435-1448. [14] 王媛,程曦,殷培红,等.影响中国碳排放绩效的区域特征研究:基于熵值法的聚类分析[J].自然资源学报,2013,28(7):1106-1116. doi: 10.11849/zrzyxb.2013.07.003WANG Y,CHENG X,YIN P H,et al.Research on regional characteristics of China′s carbon emission performance based on entropy method and cluster analysis[J].Journal of Natural Resources,2013,28(7):1106-1116. doi: 10.11849/zrzyxb.2013.07.003 [15] 孟雪,狄乾斌,季建文.京津冀城市群生态绩效水平测度及影响因素[J].经济地理,2020,40(1):181-186,225.MENG X,DI Q B,JI J W.Measurement on the level of the urban ecological performance and analysis of influential factors in Beijing-Tianjin-Hebei Urban Agglomeration[J].Economic Geography,2020,40(1):181-186,225. [16] XU L,FAN M T,YANG L L,et al.Heterogeneous green innovations and carbon emission performance:evidence at China´s city level[J].Energy Economics,2021,99:105269. doi: 10.1016/j.eneco.2021.105269 [17] 邵帅,范美婷,杨莉莉.经济结构调整、绿色技术进步与中国低碳转型发展:基于总体技术前沿和空间溢出效应视角的经验考察[J].管理世界,2022,38(2):46-69.SHAO S,FAN M T,YANG L L.Economic restructuring,green technical progress,and low-carbon transition development in China:an empirical investigation based on the overall technology frontier and spatial spillover effect[J].Journal of Management World,2022,38(2):46-69. [18] WANG S J,WANG Z H,FANG C L.Evolutionary characteristics and driving factors of carbon emission performance at the city level in China[J].Science China (Earth Sciences),2022,65(7):1292-1307. doi: 10.1007/s11430-021-9928-2 [19] ZHAO W,LIU X M,WANG D,et al.Digital economy and carbon emission performance:evidence at China′s city level[J].Energy Policy,2022,165:112927. doi: 10.1016/j.enpol.2022.112927 [20] 王群伟,周鹏,周德群.我国二氧化碳排放绩效的动态变化、区域差异及影响因素[J].中国工业经济,2010(1):45-54.WANG Q W,ZHOU P,ZHOU D Q.Research on dynamic carbon dioxide emissions performance,regional disparity and affecting factors in China[J].China Industrial Economics,2010(1):45-54. [21] 邓荣荣,张翱祥.中国城市数字金融发展对碳排放绩效的影响及机理[J].资源科学,2021,43(11):2316-2330. doi: 10.18402/resci.2021.11.14DENG R R,ZHANG A X.The impact of urban digital finance development on carbon emission performance in China and mechanism[J].Resources Science,2021,43(11):2316-2330. doi: 10.18402/resci.2021.11.14 [22] 王凯,刘依飞,甘畅.旅游产业集聚对旅游业碳排放效率的空间溢出效应[J].生态学报,2022,42(10):3909-3918.WANG K,LIU Y F,GAN C.Spatial spillovers of tourism agglomeration on the carbon emission efficiency of tourism industry[J].Acta Ecologica Sinica,2022,42(10):3909-3918. [23] 高煜君,田涛.碳交易对试点省市碳效率的影响机制研究[J].经济问题探索,2022(3):106-119.GAO Y J,TIAN T.Research on the impact mechanism of carbon trading on the carbon efficiency of pilot provinces[J].Inquiry into Economic Issues,2022(3):106-119. [24] 冯兰刚,阳文丽,王忠,等.中国数字经济与城市碳排放强度:时空演化与作用机制[J].中国人口·资源与环境,2023,33(1):150-160.FENG L G,YANG W L.WANG Z,et al.Digital economy and urban carbon emission intensity in China:spatio-temporal evolution and mechanisms[J].China Population,Resources and Environment,2023,33(1):150-160. [25] 孔令英,董依婷,赵贤.数字经济发展对碳排放的影响:基于中介效应与门槛效应的检验[J].城市发展研究,2022,29(9):42-49,55.KONG L Y,DONG Y T,ZHAO X.The impact of digital economy development on carbon emission:based on the test of intermediary effect and threshold effect[J].Urban Development Studies,2022,29(9):42-49,55. [26] 缪陆军,陈静,范天正,等.数字经济发展对碳排放的影响:基于278个地级市的面板数据分析[J].南方金融,2022(2):45-57.MIAO L J,CHEN J,FAN T Z,et al.The impact of digital economy development on carbon emission:a panel data analysis of 278 prefecture-level cities[J].South China Finance,2022(2):45-57. [27] 刘强,马彦瑞,徐生霞.数字经济发展是否提高了中国绿色经济效率?[J].中国人口·资源与环境,2022,32(3):72-85.LIU Q,MA Y R,XU S X.Has the development of digital economy improved the efficiency of China´s green economy?[J].China Population,Resources and Environment,2022,32(3):72-85. [28] 魏丽莉,侯宇琦.数字经济对中国城市绿色发展的影响作用研究[J].数量经济技术经济研究,2022,39(8):60-79. doi: 10.13653/j.cnki.jqte.2022.08.005WEI L L,HOU Y Q.Research on the impact of China´s digital economy on urban green development[J].Journal of Quantitative & Technological Economics,2022,39(8):60-79. doi: 10.13653/j.cnki.jqte.2022.08.005 [29] 许广月,宋德勇.中国碳排放环境库兹涅茨曲线的实证研究:基于省域面板数据[J].中国工业经济,2010(5):37-47.XU G Y,SONG D Y.An empirical study of the environmental Kuznets curve for China´s carbon emissions:based on provincial panel data[J].China Industrial Economics,2010(5):37-47. [30] 周晓辉,刘莹莹,彭留英.数字经济发展与绿色全要素生产率提高[J].上海经济研究,2021(12):51-63. doi: 10.3969/j.issn.1005-1309.2021.12.007ZHOU X H,LIU Y Y,PENG L Y.Development of digital economy and improvement of green total factor productivity[J].Shanghai Journal of Economics,2021(12):51-63. doi: 10.3969/j.issn.1005-1309.2021.12.007 [31] 金飞,徐长乐.数字经济发展对碳排放的非线性影响研究[J].现代经济探讨,2022(11):14-23.JIN F,XU C L.Research on the nonlinear impact of digital economy development on carbon emissions[J].Modern Economic Research,2022(11):14-23. [32] 张友国.经济发展方式变化对中国碳排放强度的影响[J].经济研究,2010,45(4):120-133.ZHANG Y G.Economic development pattern change impact on China´s carbon intensity[J].Economic Research Journal,2010,45(4):120-133. [33] TONE K.A slacks-based measure of efficiency in data envelopment analysis[J].European Journal of Operational Research,2001,130(3):498-509. doi: 10.1016/S0377-2217(99)00407-5 [34] 王兆峰,李竹,吴卫.长江经济带不同等级城市碳排放的时空演变及其影响因素[J].环境科学研究,2022,35(10):2273-2281. doi: 10.13198/j.issn.1001-6929.2022.02.29WANG Z F,LI Z,WU W.Spatio-temporal evolution and influencing factors of carbon emissions in different grade cities in the Yangtze River Economic Belt[J].Research of Environmental Sciences,2022,35(10):2273-2281. doi: 10.13198/j.issn.1001-6929.2022.02.29 [35] 王瀚迪,袁逸铭.数字经济、目的国搜寻成本和企业出口产品质量[J].国际经贸探索,2022,38(1):4-20. doi: 10.13687/j.cnki.gjjmts.20220104.002WANG H D,YUAN Y M.Digital economy,search cost of destination country and export quality of China´s enterprises[J].International Economics and Trade Research,2022,38(1):4-20. doi: 10.13687/j.cnki.gjjmts.20220104.002 [36] 陈贵富,韩静,韩恺明.城市数字经济发展、技能偏向型技术进步与劳动力不充分就业[J].中国工业经济,2022(8):118-136. doi: 10.3969/j.issn.1006-480X.2022.08.007CHEN G F,HAN J,HAN K M.Urban digital economy development,skill-biased technological change and underemployment[J].China Industrial Economics,2022(8):118-136. doi: 10.3969/j.issn.1006-480X.2022.08.007 [37] 王香艳,李金叶.数字经济是否有效促进了节能和碳减排?[J].中国人口·资源与环境,2022,32(11):83-95.WANG X Y,LI J Y.Did the digital economy effectively promote energy conservation and CO2 reduction?[J].China Population,Resources and Environment,2022,32(11):83-95. [38] 郭丰,杨上广,任毅.数字经济、绿色技术创新与碳排放—来自中国城市层面的经验证据[J].陕西师范大学学报(哲学社会科学版),2022,51(3):45-60.GUO F,YANG S G,REN Y.The digital economy,green technology innovation and carbon emissions:empirical evidence from Chinese city-level data[J].Journal of Shaanxi Normal University (Philosophy and Social Sciences Edition),2022,51(3):45-60. [39] 付凌晖.我国产业结构高级化与经济增长关系的实证研究[J].统计研究,2010,27(8):79-81. doi: 10.3969/j.issn.1002-4565.2010.08.011FU L H.An empirical research on industry structure and economic growth[J].Statistical Research,2010,27(8):79-81. doi: 10.3969/j.issn.1002-4565.2010.08.011 [40] 甘畅,王凯.中国省际服务业碳排放空间网络结构及其驱动因素[J].环境科学研究,2022,35(10):2264-2272. doi: 10.13198/j.issn.1001-6929.2022.02.28GAN C,WANG K.Provincial spatial network structure of carbon emissions from service industry and driving factors in China[J].Research of Environmental Sciences,2022,35(10):2264-2272. doi: 10.13198/j.issn.1001-6929.2022.02.28 [41] 何小钢,张耀辉.中国工业碳排放影响因素与EKC重组效应:基于STIRPAT模型的分行业动态面板数据实证研究[J].中国工业经济,2012(1):26-35.HE X G,ZHANG Y H.Influence factors and environmental Kuznets curve relink effect of Chinese industry´s carbon dioxide emission:empirical research based on STIRPAT model with industrial dynamic panel data[J].China Industrial Economics,2012(1):26-35. [42] 郭峰,王靖一,王芳,等.测度中国数字普惠金融发展:指数编制与空间特征[J].经济学(季刊),2020,19(4):1401-1418. doi: 10.13821/j.cnki.ceq.2020.03.12GUO F,WANG J Y,WANG F,et al.Measuring China´s digital financial inclusion:index compilation and spatial characteristics[J].China Economic Quarterly,2020,19(4):1401-1418. doi: 10.13821/j.cnki.ceq.2020.03.12 -