Characterization of Reactive Gas and Source Analysis in Taklimakan Desert Based on Unmanned Aerial Vehicle Observation
-
摘要: 为研究沙漠地区大气环境和反应性气体变化机理,利用无人机观测平台于春季(2022年5月8—30日)和夏季(2021年7月19—31日)对塔克拉玛干沙漠中心(塔中站)和南缘(民丰站)的反应性气体体积分数、气温、相对湿度和风速进行垂直观测,对比沙漠腹地和边缘的反应性气体垂直变化,结合HYSPLIT模式究其来源. 结果表明:①民丰站CO体积分数整体略高于塔中站,春季CO体积分数明显高于夏季,并且可能存在较强的SO2和NO2污染现象. CO平均体积分数呈民丰站春季(524.68×10−9)>民丰站夏季(468.95×10−9)>塔中站春季(313.42×10−9)>塔中站夏季(133.64×10−9)的特征;SO2体积分数夏季高于春季,呈民丰站夏季(105.22×10−9)>民丰站春季(69.21×10−9)>塔中站夏季(65.38×10−9)>塔中站春季(49.98×10−9)的特征;塔中站NO2体积分数整体高于民丰站,呈塔中站春季(158.95×10−9)>塔中站夏季(155.10×10−9)>民丰站春季(131.58×10−9)>民丰站夏季(127.23×10−9)的特征,并与O3体积分数显著相关;夏季O3体积分数明显高于春季,呈塔中站夏季(51.22×10−9)>民丰站夏季(24.23×10−9)>塔中站春季(11.90×10−9)>民丰站春季(11.67×10−9)的特征. ②塔中站和民丰站两地反应性气体垂直廓线变化特征显著,CO体积分数随着高度的升高而增加,且受风速变化影响;SO2体积分数多呈波动性变化特征;NO2体积分数白天高于夜间,垂直方向上的变化存在波动,近地面NO2出现累积;O3体积分数垂直廓线呈明显的昼夜特征. ③春季塔中站反应性气体大部分可能由“东灌”气流远距离输送而来;夏季塔中站反应性气体体积分数主要受盆地北缘绿洲带人为活动影响. 春季民丰站的反应性气体多来自盆地边缘的人为活动集中区,反应性气体体积分数较大,夏季气流均起源于沙漠内部,因此这可能是导致春夏季反应性气体体积分数差异的原因. 研究显示,春季、夏季塔中站和民丰站的反应性气体体积分数水平存在明显差异,人为活动较为集中的区域贡献了较高的反应性气体体积分数.Abstract: The vertical structures of reactive gas concentrations, air temperature, relative humidity and wind speed were observed in the center (Tazhong station) and southern edge (Minfeng station) of the Taklamakan Desert during 21st-31st July 2021 and 8th-29th May 2022 using an unmanned airplane observation platform to compare the vertical variations of reactive gases in the hinterland and southern edge, and the source was further investigated in combination with the HYSPLIT model. The results show that: (1) The overall CO concentration at Minfeng station is slightly higher than that at Tazhong station, the CO concentration in spring is significantly higher than that in summer, and there may be high concentrations of SO2 and NO2. The average CO concentration was as follows: Minfeng station spring (524.68×10−9 ) >Minfeng station summer (468.95×10−9) >Tazhong station spring (313.42×10−9) >Tazhong station summer (133.64×10−9). The SO2 concentration in summer was higher than that in spring with the characteristics of Minfeng station summer (105.22×10−9) >Minfeng station spring (69.21×10−9) >Tazhong station summer (65.38×10−9) >Tazhong station spring (49.98×10−9). The overall NO2 concentration at Tazhong station were higher than that at Minfeng station with spring at Tazhong station (158.95×10−9) >summer at Tazhong station (155.10×10−9) >spring at Minfeng station (131.58×10−9) >summer at Minfeng station (127.23×10−9), which correlated with the change of O3 concentration. The O3 concentration in summer was significantly higher than that in spring, showing the characteristics of summer at Tazhong station (51.22×10−9) >summer at Minfeng station (24.23×10−9) >spring at Tazhong station (11.90×10−9) >spring at Minfeng station (11.67×10−9). (2) The vertical profile of reactive gases at Tazhong station and Minfeng station changed significantly, and CO concentration increased with height and was affected by change of wind speed. SO2 concentration was mostly characterized by fluctuating changes. NO2 concentration was higher during the day than at night, and the concentration of NO2 near the ground was higher. O3 concentration showed obvious diurnal change in the vertical profile. (3) Most of the reactive gases in the spring are likely to be transported over long distances by the ‘Eastern Irrigation’ airflows. The reactive gas concentration at Tazhong station in summer was mainly affected by human activities in the oasis zone on the northern edge of the basin. The spring airflow at Minfeng station came from the county area on the southern edge of the basin, where human activities were relatively concentrated and contributed a larger concentration of reactive gases. The summer airflows at Minfeng station all originated from the interior of the desert, which may lead to differences in reactive gas concentrations in spring and summer. The study shows that there are significant differences in reactive gas concentrations at Tazhong station and Minfeng station in spring and summer, and the areas with high human activities contribute to high reactive gas concentrations.
-
Key words:
- nitrogen dioxide /
- sulfur dioxide /
- ozone /
- carbon monoxide /
- HYSPLIT model /
- cluster analysis
-
表 1 无人机一般参数
Table 1. General parameters of the unmanned aerial vehicles (UAVs)
参数 无人机型号 UAV4000型 UAV6000型 最大飞行高度/m 5 000 1 000 最大上升速度/(m/s) 6 5 最大下升速度/(m/s) 5 8 最大起飞质量/kg 9 15 空质量/kg 3.6 10 表 2 B4系列电化学气体传感器规格参数
Table 2. B4 series electrochemical gas sensor specifications
项目 CO传感器 NO2传感器 SO2传感器 O3传感器 工作范围/10−6 0~50 0~20 0~20 <2 灵敏度/(nA/10−6) 500~750 −350~−60 350~550 −600~−10 分辨率/10−9 <10 <5 <3 <3 反应时间/s <25 <35 <50 <30 零点电流/10−9 −400~0 −60~100 0~200 −75~0 寿命/月 >24 >24 >24 >24 温度范围/℃ −30~50 30~50 −30~50 −30~50 压力范围/kPa 80~120 80~120 80~120 80~120 相对湿度范围/% 15~90 15~90 15~90 15~90 推荐负载/Ω 33~100 33~100 33~100 33~100 表 3 塔中站不同时刻CO、SO2、NO2、O3体积分数范围
Table 3. Concentration ranges of CO, SO2, NO2, O3 concentrations at different time at Tazhong station
时刻 体积分数/10−9 CO SO2 NO2 O3 01:00 445~601 3~57 154~479 1~13 07:00 294~516 1~43 137~500 3~20 13:00 229~606 23~46 204~564 3~11 19:00 350~661 13~26 165~562 3~27 23:00 325~560 10~46 163~468 2~16 表 4 民丰站不同时刻CO、SO2、NO2和O3体积分数范围
Table 4. Concentration ranges of CO, SO2, NO2 and O3 at different time at Minfeng station
时刻 体积分数/10−9 CO SO2 NO2 O3 07:00 641~786 4~67 109~220 10~30 10:00 499~731 14~62 112~243 4~19 13:00 487~791 6~26 175~308 3~14 16:00 526~690 11~41 169~323 4~17 19:00 540~749 10~27 186~320 3~12 22:00 516~783 5~76 132~277 1~15 表 5 春季和夏季塔中站和民丰站48 h后向轨迹聚类及高度
Table 5. Clustering and heights of 48 h backward trajectories in spring and summer at Tazhong station and Minfeng station
气象观测站 季节 轨迹 占比/% 起源高度/m 途经区域 塔中站 春季 1 31.81 1 000 吐鲁番市、托克逊县、焉耆县、库尔勒市、塔克拉玛干沙漠东部 2 22.24 1 200 轮台县、肖塘镇、塔克拉玛干沙漠中部 3 20.35 0 阿克苏市、库车市、沙雅县、塔克拉玛干沙漠西部 4 25.60 1 400 塔城地区、古尔班通古特沙漠、乌鲁木齐市、吐鲁番市、托克逊县、焉耆县、库尔勒市、塔克拉玛干沙漠东部 夏季 1 18.24 1 700 库车市、轮台县、塔克拉玛干沙漠中部 2 47.50 1 300 库车市、轮台县、塔克拉玛干沙漠中部 3 20.88 1 200 库车市、轮台县、塔克拉玛干沙漠中部 4 13.38 2 300 库车市、轮台县、塔克拉玛干沙漠中部 民丰站 春季 1 16.31 700 塔克拉玛干沙漠中部、和田市、于田县 2 22.64 0 塔克拉玛干沙漠中部、和田市、于田县、喀什市 3 28.70 300 且末县、塔克拉玛干沙漠东部 4 32.35 1 600 塔克拉玛干沙漠中部 夏季 1 48.09 1 000 塔克拉玛干沙漠中部偏东 2 10.85 800 塔克拉玛干沙漠中部 3 25.95 600 塔克拉玛干沙漠中部 4 15.11 800 塔克拉玛干沙漠中部偏西 -
[1] 张小曳.大气成分与大气环境[M].北京:气象出版社,2010:12-13. [2] EHHALT D,ZELLNER R,GEORGII H W,et al.Global aspects of atmospheric chemistry[M].Berlin:Springer Science & Business Media,1999. [3] GAUBERT B,WORDEN H M,ARELLANO A F J,et al.Chemical feedback from decreasing carbon monoxide emissions[J].Geophysical Research Letters,2017,44(19):9985-9995. doi: 10.1002/2017GL074987 [4] QU Z,HENZE D K,LI C,et al.SO2 emission estimates using OMI SO2 retrievals for 2005-2017[J].Journal of Geophysical Research Atmospheres,2019,124(14):8336-8359. doi: 10.1029/2019JD030243 [5] SUN J,SHEN Z X,ZHANG Y,et al.Urban VOC profiles,possible sources,and its role in ozone formation for a summer campaign over Xi´an,China[J].Environmental Science and Pollution Research,2019,26(27):27769-27782. doi: 10.1007/s11356-019-05950-0 [6] HAMRA G B,LADEN F,COHEN A J,et al.Lung cancer and exposure to nitrogen dioxide and traffic:a systematic review and meta-analysis[J].Environmental Health Perspectives,2015,123(11):1107-1112. doi: 10.1289/ehp.1408882 [7] KHANIABADI Y O,GOUDARZI G,DARYANOOSH S M,et al.Exposure to PM10,NO2,and O3 and impacts on human health[J].Environmental Science and Pollution Research,2017,24(3):2781-2789. doi: 10.1007/s11356-016-8038-6 [8] HU Y,YAO M Y,LIU Y M,et al.Personal exposure to ambient PM2.5,PM10,O3,NO2,and SO2 for different populations in 31 Chinese provinces[J].Environment International,2020,144:106018. doi: 10.1016/j.envint.2020.106018 [9] WALLACE J M,HOBBS P V.Atmospheric science:an introductory survey[M].2nd ed.Burlington,MA:Elsevier Academic Press,2006. [10] GUIMARÃES P,YE J,BATISTA C,et al.Vertical profiles of ozone concentration collected by an unmanned aerial vehicle and the mixing of the nighttime boundary layer over an Amazonian urban area[J].Atmosphere,2019,10(10):599. doi: 10.3390/atmos10100599 [11] LI X B,WANG D S,LU Q C,et al.Three-dimensional investigation of ozone pollution in the lower troposphere using an unmanned aerial vehicle platform[J].Environmental Pollution,2017,224:107-116. doi: 10.1016/j.envpol.2017.01.064 [12] 国家质量监督检验检疫总局,中国国家标准化管理委员会.环境空气质量标准:GB 3095—2012[S].北京:中国环境科学出版社,2016. [13] 何清,刘强,杨兴华,等.塔克拉玛干沙漠腹地冬季大气边界层O3廓线分析[J].中国沙漠,2010,30(4):909-916.HE Q,LIU Q,YANG X H,et al.Profiles of atmosphere boundary layer ozone in winter over hinterland of Taklimakan Desert[J].Journal of Desert Research,2010,30(4):909-916. [14] 何清,金莉莉,杨兴华,等.秋季南疆沙漠塔中边界层O3浓度及影响因子分析[J].高原气象,2010,29(1):214-221.HE Q,JIN L L,YANG X H,et al.Analysis on O3 concentration and affecting factors for boundary-layer in hinterland of Taklimakan Desert in autumn[J].Plateau Meteorology,2010,29(1):214-221. [15] ALI K,TRIVEDI D K,SAHU S K.Surface ozone characterization at Larsemann Hills and Maitri,Antarctica[J].Science of the Total Environment,2017,584/585:1130-1137. doi: 10.1016/j.scitotenv.2017.01.173 [16] 何清,金莉莉.塔克拉玛干沙漠气象野外科学试验成果概述[J].新疆大学学报(自然科学版)(中英文),2021,38(3):334-354.HE Q,JIN L L.Summary of meteorological field scientific experiment results in Taklimakan Desert[J].Journal of Xinjiang University (Natural Science Edition in Chinese and English),2021,38(3):334-354. [17] GUIMARÃES P,YE J H,BATISTA C,et al.Vertical profiles of atmospheric species concentrations and nighttime boundary layer structure in the dry season over an urban environment in central Amazon collected by an unmanned aerial vehicle[J].Atmosphere,2020,11(12):1371. doi: 10.3390/atmos11121371 [18] 沈奥,周树道,王敏,等.旋翼无人机大气探测设备布局仿真优化设计[J].计算机测量与控制,2018,26(2):165-169.SHEN A,ZHOU S D,WANG M,et al.Simulation and optimization design of atmospheric detection equipment layout based on UAV[J].Computer Measurement & Control,2018,26(2):165-169. [19] 陆忠奇,赵竹君,何清.库尔勒市大气颗粒物浓度特征及来源[J].中国沙漠,2022,42(6):74-84.LU Z Q,ZHAO Z J,HE Q.Characteristics and sources of atmospheric particulate matter concentration in Korla City[J].Journal of Desert Research,2022,42(6):74-84. [20] 李汉林,何清,赵权威.喀什地区PM10输送路径及潜在源区[J].中国沙漠,2021,41(5):62-70.LI H L,HE Q,ZHAO Q W.Transport pathways and potential source regions of PM10 in Kashgar,Xinjiang,China[J].Journal of Desert Research,2021,41(5):62-70. [21] 王建英,张肃诏,雍佳,等.宁夏典型工业城市2020年1月重污染过程特征及成因[J].环境科学研究,2021,34(8):1802-1811.WANG J Y,ZHANG S Z,YONG J,et al.Characteristics and causes of heavy pollution in typical industrial city in Ningxia in January 2020[J].Research of Environmental Sciences,2021,34(8):1802-1811. [22] 高阳,韩永贵,黄晓宇,等.基于后向轨迹模式的豫南地区冬季PM2.5来源分布及传输分析[J].环境科学研究,2021,34(3):538-548.GAO Y,HAN Y G,HUANG X Y,et al.PM2.5 source distribution and transmission in winter in southern Henan Province based on backward trajectory model[J].Research of Environmental Sciences,2021,34(3):538-548. [23] 王琰玮,王媛,张增凯,等.不同季节天津市PM2.5与O3潜在源区及传输路径分析[J].环境科学研究,2022,35(3):673-682.WANG Y W,WANG Y,ZHANG Z K,et al.Analysis of potential source areas and transport pathways of PM2.5 and O3 in Tianjin by season[J].Research of Environmental Sciences,2022,35(3):673-682. [24] SAPKOTA A,SYMONS J M,KLEISSL J,et al.Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore City[J].Environmental Science & Technology,2005,39(1):24-32. [25] LEE S,ASHBAUGH L.The impact of trajectory starting heights on the MURA trajectory source apportionment (TSA) method[J].Atmospheric Environment,2007,41(33):7022-7036. doi: 10.1016/j.atmosenv.2007.05.005 [26] KARACA F,ANIL I,ALAGHA O.Long-range potential source contributions of episodic aerosol events to PM10 profile of a megacity[J].Atmospheric Environment,2009,43(36):5713-5722. doi: 10.1016/j.atmosenv.2009.08.005 [27] 赵权威.阿克达拉大气本底站反应性气体浓度特征及来源研究[D].乌鲁木齐:新疆大学,2021. [28] 王晓雯,刘旻霞,王扬,等.华东地区对流层O3和前体物HCHO及NO2的时空特征[J].环境科学,2023.doi: 10.13227/j.hjkx.202210122.WANG X W,LIU M X,WANG Y,et al.Temporal and spatial characteristics of troposphere O3 and precursors HCHO and NO2 in East China[J].Environmental Science,2023.doi: 10.13227/j.hjkx.202210122. [29] 赵权威,何清,王慧琴,等.阿克达拉大气本底站NO2输送路径及潜在源分析[J].环境科学学报,2021,41(3):874-885.ZHAO Q W,HE Q,WANG H Q,et al.Identification of transport pathways and potential source areas of NO2 in Akedala[J].Acta Scientiae Circumstantiae,2021,41(3):874-885. [30] 郭滢超.北京市大气污染物的周期特征及其影响机制分析[D].兰州:兰州大学,2022. [31] 郑尼娜,徐雅琦,潘玲阳.合肥市高新区大气SO2、O3和NO2污染特征及来源分析[J].吉首大学学报(自然科学版),2023,44(3):54-60. [32] 于志翔,李霞,郑博华.天山北坡经济带城市NO2污染的时空分布特征[J].环境监控与预警,2023,15(1):36-43. doi: 10.3969/j.issn.1674-6732.2023.01.006YU Z X,LI X,ZHENG B H.Temporal and spatial distribution characteristics of NO2 pollution in cities in the economic belt on the northern slope of Tianshan Mountain[J].Environmental Monitoring and Forewarning,2023,15(1):36-43. doi: 10.3969/j.issn.1674-6732.2023.01.006 [33] LI J,HUANG K,WANG Q Z,et al.Characteristics and source of black carbon aerosol over Taklimakan Desert[J].Science China Chemistry,2010,53(5):1202-1209. doi: 10.1007/s11426-010-0061-8 [34] ABBAS A,HE Q,JIN L L,et al.Spatio-temporal changes of land surface temperature and the influencing factors in the Tarim Basin,northwest China[J].Remote Sensing,2021,13(19):3792. doi: 10.3390/rs13193792 -