留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多环芳烃对海洋硅藻中肋骨条藻的光毒性效应

王丽平 郑丙辉 孟 伟

王丽平, 郑丙辉, 孟 伟. 多环芳烃对海洋硅藻中肋骨条藻的光毒性效应[J]. 环境科学研究, 2007, 20(3): 128-132.
引用本文: 王丽平, 郑丙辉, 孟 伟. 多环芳烃对海洋硅藻中肋骨条藻的光毒性效应[J]. 环境科学研究, 2007, 20(3): 128-132.
WANG Li-ping, ZHENG Bing-hui, MENG Wei. Phototoxicity of Polycyclic Aromatic Hydrocarbons to Marine Diatom Skeletonema Costatum[J]. Research of Environmental Sciences, 2007, 20(3): 128-132.
Citation: WANG Li-ping, ZHENG Bing-hui, MENG Wei. Phototoxicity of Polycyclic Aromatic Hydrocarbons to Marine Diatom Skeletonema Costatum[J]. Research of Environmental Sciences, 2007, 20(3): 128-132.

多环芳烃对海洋硅藻中肋骨条藻的光毒性效应

基金项目: 国家重点基础研究发展计划(973)项目(2002CB412409)

Phototoxicity of Polycyclic Aromatic Hydrocarbons to Marine Diatom Skeletonema Costatum

  • 摘要: 许多生态毒理学研究尤其是对水生生物的毒性研究表明,阳光中的紫外辐射(UV)能够促进多环芳烃的生物毒性. 以长江口浮游植物群落中的常年主要优势种之一——中肋骨条藻(Skeletonema costatum)为实验材料,选择2个环的萘,3个环的菲和蒽,4个环的荧蒽和芘5种寡环多环芳烃,在实验室内比较了它们在没有UV辐射和有UV辐射下对中肋骨条藻的毒性效应. 结果表明:在没有UV照射下,萘、菲、蒽、荧蒽和芘对中肋骨条藻的72 h EC50值分别比有UV照射下时高约1.9,8.4,13.0,6.5和5.7倍,其中蒽相差的倍数最大.在没有UV照射情况下,5种多环芳烃对中肋骨条藻种群生长的抑制作用强度表现为荧蒽>芘>蒽>菲>萘;而当系统中加入UV照射后,毒性强度变为荧蒽≈蒽>芘>菲>萘,表明UV照射不仅能够促进多环芳烃对中肋骨条藻的毒性,也能够改变它们对中肋骨条藻的相对毒性.

     

  • [1] ATSDR. Toxicological profile for polyaromatic hydrocarbons (PAHs) [R]. Atlanta: U.S. Department of Health and Human Services, Toxicology Information Branch, 1995. 458.
    [2] 罗雪梅, 刘昌明, 何孟常. 黄河沉积物中多环芳烃的分布特征及来源分析[J]. 环境科学研究, 2005, 18(2): 48—65.
    [3] Luo Xuemei, Liu Changming, He Mengchang. Distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in sediment from the Yellow River [J]. Research ofEnvironmental Sciences, 2005, 18(2): 48—65.
    [4] Weinstein J E, Oris J T, Taylor D H. An ultrastructural examination of the mode of UV_induced toxic action of fluoranthene in the fathead minnow, Pimphales promelas [J]. Aquat Toxicol, 1997, 39: 1—22.
    [5] Boese B L, Lamberson J O, Swartz R C, et al. Photoinduced toxicity of PAHs and alkylated PAHs to a marine infaunal amphipod (Rhepoxynius abronius) [J]. Arch Environ Contam Toxicol, 1998, 34: 235—240.
    [6] Gala W R, Giesy J P. Using the carotenoid biosynthesis inhibiting herbicide,Fluoridone, to investigate the ability of carotenoid pigments to protect algae from the photo induced toxicity of anthracene [J]. Aquat Toxicol, 1993, 27: 61—71.
    [7] Gala W R, Giesy J P. Flow cytometric determination of the photoinduced toxicity of anthracene to the green algae Selenastrum capricornutum [J]. Environ Toxicol Chem, 1994, 13: 831—840.
    [8] Marwood C A, Smith R E H, Solomon K R, et al. Intact and photomodified polycyclic aromatic hydrocarbons inhibit photosynthesis in natural assemblages of Lake Erie phytoplankton exposed to solar radiation [J]. Ecotox Environ Saf, 1999,44: 322—327.
    [9] Harrusin P J, Waters R E, Taylor F J R. A broad spectrum artificial seawatermedium for coastal and open ocean phytoplankton [J]. J Phycol, 1980, 16: 28—35.
    [10] McCloskey J T, Oris J T. Effect of anthracene and solar ultraviolet radiation exposure on gill ATPase and selected hematologic measurements in the bluegill sunfish (Lepomis macrochirus)[J]. Aquat Toxicol, 1993, 24: 207—218.
    [11] Downare T D, Mullins O C. Visible and near-infrared fluorescence of crude oils [J]. Appl Spectrosc, 1995, 49: 754—764.
    [12] Huang X D, Dixon D G, Greenberg B M. Impacts of UV radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibba (duckweed) [J]. Environ Toxicol Chem, 1993, 12: 1067—1077.
    [13] Ren L, Huang X D, McConkey B J, et al. Photoinduced toxicity of three polycyclic aromatic hydrocarbons (fluoranthene, pyrene, and naphthalene) to the duckweed Lemna gibba L. G-3 [J]. Ecotox Environ Saf, 1994,28: 160—171.
    [14] Huang X D, Krylov S N, Ren L, et al. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons(Ⅱ): an empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3 [J]. Environ Toxicol Chem, 1997, 16: 2296—2303.
    [15] Duxbury C L, Dixon D G, Greenberg B M. Effects of simulated solar radiationon the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba [J]. Environ Toxicol Chem, 1997, 16: 1739—1748.
    [16] Peachey R B J, Crosby D G. Phototoxicity in a coral reef community[A]. Gulko D, Jokiel P L. UV radiation and coral reefs, HIMB Tech. Report #41, UNIHI_Sea Grant-CR-95-03[C]. Honolulu: University of Hawaii, 1995. 193—200.
    [17] Kirso U, Irha N. Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment [J]. Ecotox Environ Saf, 1998, 41: 83—89.
    [18] Witt G. Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea [J]. Mar Chem, 2002, 79: 49—66.
  • 加载中
计量
  • 文章访问数:  1229
  • HTML全文浏览量:  15
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 刊出日期:  2007-06-25

目录

    /

    返回文章
    返回