留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

零价铁表面积对泥浆反应体系中硝基苯降解行为的影响

王世杰 谷庆宝 杜 平 卢桂兰 李发生

王世杰, 谷庆宝, 杜 平, 卢桂兰, 李发生. 零价铁表面积对泥浆反应体系中硝基苯降解行为的影响[J]. 环境科学研究, 2007, 20(6): 106-109.
引用本文: 王世杰, 谷庆宝, 杜 平, 卢桂兰, 李发生. 零价铁表面积对泥浆反应体系中硝基苯降解行为的影响[J]. 环境科学研究, 2007, 20(6): 106-109.
WANG Shi-jie, GU Qing-bao, DU Ping, LU Gui-lan, LI Fa-sheng. Effects of Iron Surface Area on Reduction of Nitrobenzene-Contaminated Sedimentin Slurry Reaction System[J]. Research of Environmental Sciences, 2007, 20(6): 106-109.
Citation: WANG Shi-jie, GU Qing-bao, DU Ping, LU Gui-lan, LI Fa-sheng. Effects of Iron Surface Area on Reduction of Nitrobenzene-Contaminated Sedimentin Slurry Reaction System[J]. Research of Environmental Sciences, 2007, 20(6): 106-109.

零价铁表面积对泥浆反应体系中硝基苯降解行为的影响

基金项目: 国家重点基础研究发展计划(973)项目(2004CB418501) ;科技部平台专项(2004DEA70890)

Effects of Iron Surface Area on Reduction of Nitrobenzene-Contaminated Sedimentin Slurry Reaction System

  • 摘要: 硝基苯能够被零价铁还原成为苯胺. 利用气相色谱分析方法,研究了泥浆体系中零价铁表面积对硝基苯污染底质降解行为的影响. 结果表明,在沉积物中初始w(硝基苯)为8.87 μg/g,按照3.27 g/L最佳比例投加还原铁粉,经2 h反应约有97%的硝基苯被降解;其还原机理为表面接触反应,铁粉总表面积是影响硝基苯降解的主要参数;沉积物中硝基苯降解速率常数(K)和残留量(y)与单位体积泥浆中零价铁总表面积(ρa)之间表现为线性和负指数相关性,其关系式分别为:K0.006 5+5.165 87×10-4ρa和y8.57exp(-ρa/7.66)+0.25;零价铁还原硝基苯的降解过程,其降解动力学符合准一级方程,并且通过SEM扫描电镜发现零价铁在反应过程中表面被严重腐蚀,颗粒组成发生明显改变.

     

  • [1] WHO. Nitrobenzene (Environmental Health Criteria 230) [Z]. Geneva: World Health Organization, 2003.
    [2] Camara E, Leder A E, Ishikawa Y. CEH data summary: nitrobenzene[M]//SRI International. Chemical economics handbook. California: Menlo Park, 1997.
    [3] Yoshida K, Shigeoka T, Yamauchi F. Estimation of environmental fateof industrial chemicals[J]. Toxicol Environ Chem, 1988, 17: 69-85.
    [4] He M C, Sun Y, Xing R L, et al. Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid-and down-stream of the Yellow River (China)[J]. Chemosphere, 2006(3):365-374.
    [5] Gerlach R, Steiof M, Zhang C L, et al. Low aqueous solubility electron donors for the reduction of nitroaromatics in anaerobic sediments[J]. J Contam Hydrol, 1999, 36: 91-104.
    [6] Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal[J]. Environ Sci Technol, 1996, 30: 2634-2640.
    [7] Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal[J]. Environ Sci Technol, 1996, 30: 153-160.
    [8] Antoine G. Degradation of benomyl, picloram, and dicamba in a conicalapparatus by zero-valent iron power[J]. Chemosphere, 2001, 43: 1109-1117.
    [9] Tyrovola K, Nikolaidis N P, Veranis N, et al. Arsenic removal from geothermal waters with zero-valent iron-effect of temperature, phosphate and nitrate[J]. Water Res, 2006, 40: 2375-2386.
    [10] Alowitz M J, Scherer M M. Kinetcs of nitrate, nitrite, and Cr (Ⅵ)reduction by iron metal[J]. Environ Sci Technol, 2002, 36: 299-306.
    [11] Comfort S D, Shea P J, Machacek T A, et al. Pilot-scale treatment of RDX-contaminated soil with zerovalent iron[J]. J Environ Qual, 2003, 32:1717-1725.
    [12] Park J, Comfort S D, Shea P J, et al. Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants[J]. J Environ Qual, 2004, 33:1305-1313.
    [13] Weber E J. Iron-mediated reductive transformations: investigationof reaction mechanism[J]. Environ Sci Technol, 1996, 30:716-719.
    [14] Scherer M M, Johnson K M, Westall J C, et al. Mass transport effectson the kinetics of nitrobenzene reduction by iron metal[J]. Environ Sci Technol, 2001, 35:2804-2811.
    [15] Singh J, Comfort S D, Shea P J. Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH[J]. Environ Sci Technol, 1999, 33:1488-1494.
    [16] 樊金红, 徐文英, 高廷耀. 零价铁体系预处理硝基苯废水机理的研究[J].工业用水与废水, 2004, 35(6):53-56.
    [17] 吴双桃, 陈少谨, 胡劲召, 等. 零价铁对土壤中硝基苯类化合物的还原作用[J]. 中国环境科学, 2005, 25(2):188-191.
    [18] Nishikawa Y, Okumura T. Determination of nitrobenzenes in river water, sediment and fish samples by gas chromatography-mass spectrometry[J]. Ana Chim Acta, 1995, 312:45-55.
    [19] Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environ Sci Technol, 1994, 28:2045-2053.
    [20] Gillham R W, O'Hannesin S F. Enhanced degradation of halogenated aliphatics by zero valent iron[J]. Ground Water, 1994, 32:958-967.
    [21] Devlin J F, Klausen J, Schwarzenbach R P. Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments[J]. Environ Sci Technol, 1998, 32:1941-1947.
    [22] Kenneke J F, Weber E J. Reductive dehalogenation of halomethanes in iron-and sulfate-reducing sediments(1): reactivity pattern analysis[J]. Environ Sci Technol, 2003, 37:713-720.
    [23] Hung H M, Ling F H, Hoffmann M R. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound[J]. Environ Sci Technol, 2000, 34:1758-1763.
    [24] Hofstetter T B, Heijman C G, Hadbrlein S B, et al. Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions[J]. Environ Sci Technol, 1999, 33:1479-1487.
    [25] Xu W Y, Gao T Y, Fan J H. Reduction of nitrobenzene by the catalyzed Fe-Cu process[J]. J Hazard Mater B, 2005, 123:232-241.
    [26] Doong R A, Lai Y L. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron[J]. Chemosphere, 2006, 64: 371-378.
    [27] Bell L S, Devlin R W, Gillham R W, et al. A sequential zero valent iron andaerobic biodegradation treatment system for nitrobenzene[J]. J Contam Hydrol,2003, 66:201-217.
    [28] Williams A G B, Scherer M M. Spectroscopic evidence for Fe(Ⅱ)-Fe(Ⅲ) electron transfer at the iron oxide-water interface[J]. Environ Sci Technol, 2004,38:4782-4790.
  • 加载中
计量
  • 文章访问数:  1408
  • HTML全文浏览量:  12
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-03-27
  • 修回日期:  2007-05-08
  • 刊出日期:  2007-12-25

目录

    /

    返回文章
    返回