留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海市滨岸带沉积物中酸挥发性硫化物垂直分布及空间变化特征

周 栋 王东启 陈振楼 孙月娣 毕春娟 李九发 许世远

周 栋, 王东启, 陈振楼, 孙月娣, 毕春娟, 李九发, 许世远. 上海市滨岸带沉积物中酸挥发性硫化物垂直分布及空间变化特征[J]. 环境科学研究, 2009, 22(2): 138-144.
引用本文: 周 栋, 王东启, 陈振楼, 孙月娣, 毕春娟, 李九发, 许世远. 上海市滨岸带沉积物中酸挥发性硫化物垂直分布及空间变化特征[J]. 环境科学研究, 2009, 22(2): 138-144.
ZHOU Dong, WANG Dong-qi, CHEN Zhen-lou, SUN Yue-di, BI Chun-juan, LI Jiu-fa, XU Shi-yuan. Vertical Profile and Spatial Distribution of Acid-Volatile Sulfide in the Estuarine and Coastal Sediments of Shanghai City[J]. Research of Environmental Sciences, 2009, 22(2): 138-144.
Citation: ZHOU Dong, WANG Dong-qi, CHEN Zhen-lou, SUN Yue-di, BI Chun-juan, LI Jiu-fa, XU Shi-yuan. Vertical Profile and Spatial Distribution of Acid-Volatile Sulfide in the Estuarine and Coastal Sediments of Shanghai City[J]. Research of Environmental Sciences, 2009, 22(2): 138-144.

上海市滨岸带沉积物中酸挥发性硫化物垂直分布及空间变化特征

基金项目: 国家自然科学基金项目(40730526,40701164);上海市海洋局908专项项目(HAD1, HAD2);上海市“十一五”重大科技攻关项目(07DZ12037);中国博士后科学基金项目(20060400635)

Vertical Profile and Spatial Distribution of Acid-Volatile Sulfide in the Estuarine and Coastal Sediments of Shanghai City

  • 摘要: 对上海市滨岸带(北起浏河口,南至杭州湾的金丝娘桥)18个柱状沉积物中酸挥发性硫化物(AVS)质量分数及其垂直分布特征进行了研究. 结果表明:沉积物中w(AVS)为0.38~317.60 mg/kg,底层沉积物中w(AVS)平均值最高,是表层和中层的2倍左右. 各采样点沉积物中底层w(AVS)空间变化差异最大,表层w(AVS)变化较小. 人类活动干扰(滨岸带围垦、工业排污和生活排污和畜禽养殖等)显著改变了潮滩原有的自然环境特征〔w(有机碳)、含水率、粒度组成以及氧化还原电位等〕,可能成为控制上海市滨岸带沉积物中w(AVS)空间变化差异的决定性因素.

     

  • [1] RICKARD D, MORSE J W. Acid volatile sulfide (AVS) [J]. Marine Chemistry, 2005, 97: 141-197.
    [2] De LANGE H J, Van GRIETHUYSEN C, KOELMANS A A. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses [J]. Environ Pollut, 2008, 151: 243-251.
    [3] LEONARD E N, MATTSON V R, BENOIT D A, et al. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern Minnersoda lakes [J]. Hydrobiologia, 1993, 271: 87-95.
    [4] RICKARD D,GRIFFITH A, OLDROYD A, et al.The composition of nanoparticulate mackinawite,tetragonal iron(Ⅱ) monosulfide [J].Chemical Geology,2006,235:286-298.
    [5] VAN den Berg G A, LOCH J P G, VAN Der Heijdt L M, et al. Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the river Meuse in the Netherlands [J]. Environ Toxicol Chem, 1998, 17: 758-763.
    [6] ALLEN H E, FU G, DENG B. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments [J]. Environ Toxicol Chem, 1993, 12: 1441-1453.
    [7] 方涛, 陈晓国, 张维昊, 等. 水体沉积物中酸挥发性硫化物垂直分布模型的参数计算及相关分析[J]. 环境化学, 2002, 21(1): 14-18.
    [8] United States Environmental Protection Agency. The incidenceand severity ofsediment contamination in surface waters of the United States, national sediment quality survey[R]. 2nd ed. Washington DC: U S Environmental Protection Agency, Office of Water, 2004.
    [9] 宋进喜, 李金成, 王晓蓉, 等. 太湖梅梁湾沉积物中酸挥发性硫化物垂直变化特征研究[J]. 环境科学学报, 2004, 24(2): 271-274.
    [10] MORSE J W, RICKARD D. Chemical dynamics of sedimentary acid volatile sulfide [J]. Environ Sci Technol, 2004, 38: 131A-136A.
    [11] MEYER S F, GERSBERG R M. Heavy metals and acid-volatile sulfides in sediments of the Tijuana Estuary [J]. Bull Environ Contam Toxicol, 1997, 59: 113-119.
    [12] COOPER D C, MORSE J W. Biogeochemical controls on trace metal cycling in anoxic marine sediments [J]. Environ Sci Technol, 1998, 32: 327-330.
    [13] 霍文毅, 李全生, 马锡年. 胶州湾养殖海区沉积物中酸可挥发性硫的研究[J]. 地理科学, 2001, 21(2): 135-139.
    [14] 储昭升, 刘文新, 汤鸿霄. 官厅水库-永定河沉积物中AVS-SEM的分析[J]. 环境化学, 2003, 22(4): 313-317.
    [15] 樊庆云, 何江, 薛红喜, 等. 包头南海湖沉积物中AVS-SEM的分布规律研究[J]. 农业环境科学学报, 2007, 26(3): 910-914.
    [16] 雷鸣, 田中干也, 廖柏寒, 等. 硫化物沉淀法处理含EDTA的重金属废水[J].环境科学研究, 2008, 21(1):150-154.
    [17] Di TORO D M, MAHONY J D, HANSEN D J, et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments [J]. Environ Sci Technol, 1992, 26: 96-101.
    [18] VANDEGEHUCHTE M B, ROMAN Y E, NGUYEN L T H, et al. Toxicological availability of nickel to the benthic oligochaete Lumbriculus variegates [J]. Environ Intern, 2007, 33: 736-742.
    [19] INGERSOLL C G, HAVERLAND P S, BRUNSON E L, et al. Calculation of sedimenteffect concentrations [J]. Journal of Great Lakes Research, 1996, 22: 602-623.
    [20] 黄先飞, 秦樊鑫, 胡继伟, 等. 红枫湖沉积物中重金属污染特征与生态危害风险评价[J]. 环境科学研究, 2008, 21(2): 18-23.
    [21] PRICA M, DALMACIJA B, RONEVICKG-*2]' S,et al. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments [J]. Sci Total Environ, 2008, 389: 235-244.
    [22] 刘恩峰, 沈吉, 朱育新. 重金属元素BCR提取法及在太湖沉积物研究中的应用[J]. 环境科学研究, 2005, 18(2): 57-60.
    [23] CASAS A M, CRECELIUS E A. Relationship between acid volatilesulfide and the toxicity of zinc, lead and copper in marine-sediments[J]. Environ Toxicol Chem, 1994, 13: 529-536.
    [24] PESCH C E, HANSEN D J, BOOTHMAN W S, et al. The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability ofcadmium and nickel from contaminated sediments to the marine polychaete Neanthes arenaceodentata[J]. Environ Toxicol Chem, 1995, 14: 129-141.
    [25] HANSEN D J, BERRY W J, MAHONY J D, et al. Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations[J]. Environ Toxicol Chem, 1996, 15(12):2080-2094.
    [26] FANG T, LI X, ZHANG G. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China [J]. Ecotoxicol Environ Safety, 2005, 61: 420-431.
    [27] LEONARD E N, MATTSON V R, ANKLEY G T. Horizonspecific oxidation of acid volatile sulphide in relation to the toxicity of cadmium spiked into a freshwater sediment [J]. Arch Environ Contam Toxicol, 1995, 28: 78-84.
    [28] HUERTA DIAZ M A, TESSIER A, CARIGNAN R. Geochemistry of trace metals associated with reduced sulphur in freshwater sediments [J]. Appl Geochem, 1998, 13: 213-233.
    [29] 付金沐, 刘敏, 侯立军, 等. 长江口滨岸排污活动对潮滩营养盐环境地球化学过程的影响[J]. 环境科学, 2007, 28(2): 315-321.
    [30] 许世远, 陶静, 陈振楼, 等. 上海潮滩沉积物重金属的动力学累积特征[J].海洋与湖沼, 1997, 28(5): 509-515.
    [31] CHEN Z, LIU P, XU S, et al. Spatial distribution and accumulation of heavy metals in tidal flat sediments of Shanghai coastal zone [J]. Science in China: Series B, 2001, 44(Suppl.): 197-208.
    [32] 毕春娟, 陈振楼, 许世远, 等. 长江口潮滩大型底栖动物对重金属的累积特征[J]. 应用生态学报, 2006, 17(2): 309-314.
    [33] 国家质量技术监督局. 海洋监测规范(第5部分): 沉积物分析[S]. 北京:中国标准出版社, 1998.
    [34] HOWARD D E, EVANS R D. Acid-volatile sulfide(AVS) in a seasonally anoxic mesotrophic lake: seasonal and spatial change in sediment AVS[J]. Environ Toxicol Chem, 1993, 12: 1051-1057.
    [35] 邓利, 徐小清. 武汉东湖沉积物中酸挥发性硫化物(AVS)的深度分布及其影响因素[J]. 湖泊科学, 2003, 15(3): 245-251.
    [36] MACKEY A P, MACKAY S. Spatial distribution of acid-volatile sulphide concentration and metal bioavailability in mangrove sediments from the Brisbane River,Australia [J]. Environ Pollut, 1996, 93(2): 205-209.
    [37] 甘居利, 贾晓平, 林钦, 等. 红海湾底质硫化物的分布和变化[J]. 湛江海洋大学学报, 1998, 18(4): 31-34.
    [38] 茅志昌, 沈焕庭, 陈景山. 浏河排污对罗泾河段南岸浅水区水质的影响[J].海洋湖沼通报, 2003(2): 37-40.
    [39] 沈军, 王东启, 史贵涛, 等. 黄浦江水源地水和沉积物中汞的分布[J]. 环境科学研究, 2008, 21(2): 24-28.
    [40] 余国安, 王兆印, 谢小平. 长江口水质空间分布现状评价[J]. 人民长江, 2007, 38(1): 81-84.
    [41] BESSER J M, INGERSOLL C G, GIESY J P. Effects of spatial andtemporal variation of acid-volatile sulfide on the bioavailability of copper and zincin freshwater sediments [J]. Environ Toxicol Chem, 1996, 15: 286-293.
  • 加载中
计量
  • 文章访问数:  1628
  • HTML全文浏览量:  18
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-05-16
  • 修回日期:  2008-07-02
  • 刊出日期:  2009-02-25

目录

    /

    返回文章
    返回