留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同氮输入梯度下草甸沼泽土反硝化损失和N2O排放

李英臣 宋长春 刘德燕 王 丽

李英臣, 宋长春, 刘德燕, 王 丽. 不同氮输入梯度下草甸沼泽土反硝化损失和N2O排放[J]. 环境科学研究, 2009, 22(9): 1103-1107.
引用本文: 李英臣, 宋长春, 刘德燕, 王 丽. 不同氮输入梯度下草甸沼泽土反硝化损失和N2O排放[J]. 环境科学研究, 2009, 22(9): 1103-1107.
LI Ying-chen, SONG Chang-chun, LIU De-yan, WANG Li. Denitrification Loss and N2O Emissions from Different Nitrogen Inputs in Meadow Marsh Soil[J]. Research of Environmental Sciences, 2009, 22(9): 1103-1107.
Citation: LI Ying-chen, SONG Chang-chun, LIU De-yan, WANG Li. Denitrification Loss and N2O Emissions from Different Nitrogen Inputs in Meadow Marsh Soil[J]. Research of Environmental Sciences, 2009, 22(9): 1103-1107.

不同氮输入梯度下草甸沼泽土反硝化损失和N2O排放

基金项目: 国家自然科学基金项目(40771189);国家重点基础研究发展计划(973)项目(2009CB421103)

Denitrification Loss and N2O Emissions from Different Nitrogen Inputs in Meadow Marsh Soil

  • 摘要: 在实验室培养条件下,设计N0,N1,N2,N3 4种氮输入梯度,净氮输入量分别为0,1,2 和5 mg/g,采用乙炔抑制技术,研究草甸沼泽土反硝化损失和N2O排放. 结果表明:培养期间(23 d)N1,N2和N3梯度的N2O排放速率平均值分别为12.55,7.59和4.04 μg/(kg·h),反硝化损失速率平均值分别为11.52,9.87和3.10 μg/(kg·h),二者均明显高于对照(N0)〔0.09和0.10 μg/(kg·h)〕;但高氮输入(N2和N3梯度)会对N2O排放速率和反硝化损失速率产生一定的抑制作用,且随着梯度增大而加强,差异达到显著水平(P<0.05). 24 h时土壤有机碳矿化速率随氮输入梯度升高而增大,表明氮输入初期能对土壤有机碳矿化产生激发效应;但在整个培养期,有机碳矿化速率却随氮输入增加而降低,表明只有适当的氮输入才能促进土壤有机碳矿化,过量氮输入反而会对其产生抑制作用.

     

  • [1] Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change,Intergovernmental Panel on Climate Change.Climate change 2001:the scientific basis[R].Cambridge:Cambridge University Press,2001:251-253.
    [2] 郑循华,王明星,王跃思,等.稻麦轮作系统中土壤湿度对N2O产生与排放的影响[J].应用生态学报,1996,7(3):273-279.
    [3] World Meteorological Organization (WMO).Annual greenhouse gas bulletin[R/OL]//Geneva:World Meteorological Organization.Atmospheric research and environment programme,2006[2007-11-23].http://wmo.ch/pages/prog/arep/ gaw/ghg/ghgbull06en.html.
    [4] 刘兴土,马学慧.三江平原大面积开荒对自然环境影响及区域生态环境保护[J].地理科学,2000,20(1):14-19.
    [5] 潘英姿,高吉喜.中东部地区湿地现状评价与影响分析[J].环境科学研究,2005,18(6):99-102.
    [6] BOUWMAN A F.Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere[C]//BOUWMAN A F.Proceedings of the international conference on soils and the greenhouse effect.Chichester:John Wiley,1990:61-129.
    [7] 张丽华,宋长春,王德宣.沼泽湿地CO2,CH4,N2O排放对氮输入的响应[J].环境科学学报,2005,25(8):1112-1118.
    [8] 宋长春,张丽华,王毅勇,等.淡水沼泽湿地CO2,CH4和N2O排放通量年际变化及其对氮输入的响应[J].环境科学,2006,27(12):2369-2375.
    [9] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:156-157,159-162.
    [10] 孙志高,刘景双,杨继松,等.三江平原典型小叶章湿地硝化-反硝化与氧化亚氮排放[J].应用生态学报,2007,18(1):185-192.
    [11] MOSIER A R.Acetylene inhibitionof ammonium oxidation in soil[J].Soil Biology and Biochemistry,1980,12:443-444.
    [12] 刘德燕,宋长春,王丽,等.外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响[J].环境科学,2008,29(12):3525-3530.
    [13] STAPLETON L M,CROUT N M J,SAWSTROM C,et al.Microbial carbon dynamics in nitrogen amiended Arctic tundra soil: measurement and model testing[J].Soil Biology and Biochemistry,2005,37:2088-2098.
    [14] ROBERTSON G P.Nitrification and denitrificationin humid tropical ecosystems: potential controls on nitrogen retention[C]// PROCTOR J.Mineral nutrients in tropical forest and savanna ecosystems.Oxford: Blackwell Scientific Publications,1989:55-69.
    [15] MENTZER J L,GOODMAN R M,BALSER T C.Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie[J].Plant and Soil,2006,284:85-100.
    [16] VERHOEVEN J T A,KEUTER A,LOGTESTIJN R V,et al.Control of local nutrient dynamics in mites by regional and climatic factors:a comparison of Dutch and Polish sites[J].Journal of Ecology,1996,84:647-656.
    [17] KAYE J P,HART SC.Competition for nitrogen between plants and soil microorganisms[J].Trends in Ecology and Evotion,1997,12:139-143.
    [18] RCKAUF U,AUGUSTIN J,RUSSOW R,et al.Nitrogen removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake[J].Soil Biology and Biochemisty,2004,36:77-90.
    [19] 马红亮,朱建国,谢祖彬,等.不同氮水平下秸杆和活性碳对土壤不同粒级碳氮影响[J].环境科学研究,2008,21(1):107-112.
    [20] 梁东丽,吴庆强,李生秀,等.旱地反硝化作用和N2O排放影响因子的研究[J].西北农林科技大学学报:自然科学版,2007,35(12):93-98.
    [21] PAUL E A,CLARK F E.Reduction and transport of nitrate soil mircrobiology and biochemistry[M].New York:Academic Press,1989:147-159.
    [22] 丁洪,王跃思,李卫华.玉米-潮土系统中不同氮肥品种的反硝化损失与N2O排放量[J].中国农业科学,2004,37(12):1886-1891.
    [23] LEE R Y,JOYE S B,ROBERTS B J,et al.Release of N2 and N2O from salt marsh sediments subject to different land derived N loads[J].Biology Bulletin,1997,193:292-293.
    [24] AELION C M,SHAW J N.Denitrification in South Carolina(USA) coastal sediments[J].J Environ Qual,2000,29:1696-1703.
    [25] SEITZINGER S P.Denitrification in freshwater and coastal marine ecosystems:ecological and geochemical significance[J].Limnol Oceanogr,1988,33:702-724.
    [26] 刘晶晶,汪苹,王欢.一株异养硝化-好氧反硝化菌的脱氮性能研究[J].环境科学研究,2008,21(3):121-125.
    [27] DONG L F,THORNTON D C O,NEDWELL D B,et al.Denitrification in sediments of the River Colne Estuary,England[J].Marine Ecology Progress Series,2000,203:109-122.
  • 加载中
计量
  • 文章访问数:  1255
  • HTML全文浏览量:  12
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-11-25
  • 修回日期:  2009-04-22
  • 刊出日期:  2009-09-25

目录

    /

    返回文章
    返回