留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄱阳湖流域典型树种夏季气孔导度模型及影

石建红 周锁铨 余 华 孙善磊 荆大为

石建红, 周锁铨, 余 华, 孙善磊, 荆大为. 鄱阳湖流域典型树种夏季气孔导度模型及影[J]. 环境科学研究, 2010, 23(1): 33-40.
引用本文: 石建红, 周锁铨, 余 华, 孙善磊, 荆大为. 鄱阳湖流域典型树种夏季气孔导度模型及影[J]. 环境科学研究, 2010, 23(1): 33-40.
SHI Jian-hong, ZHOU Suo-quan, YU Hua, SUN Shan-lei, JING Da-wei. Stomatal Conductance Models of Typical Tree Species in the Basin of Poyang Lake in Summer and Comparison of Their Influencing Factors[J]. Research of Environmental Sciences, 2010, 23(1): 33-40.
Citation: SHI Jian-hong, ZHOU Suo-quan, YU Hua, SUN Shan-lei, JING Da-wei. Stomatal Conductance Models of Typical Tree Species in the Basin of Poyang Lake in Summer and Comparison of Their Influencing Factors[J]. Research of Environmental Sciences, 2010, 23(1): 33-40.

鄱阳湖流域典型树种夏季气孔导度模型及影

基金项目: 国家自然科学基金项目(40775061D0507);江苏省气象灾害重点实验室项目(KLME050212)

Stomatal Conductance Models of Typical Tree Species in the Basin of Poyang Lake in Summer and Comparison of Their Influencing Factors

  • 摘要: 植物气孔是调控土壤-植被-大气连续体间物质和能量交换的关键环节,其变化对植物蒸腾作用有着重要的影响,进而对环境湿度和温度等起着重要的调节作用. 基于鄱阳湖流域5种典型树种叶片气体交换观测数据,对14种组合的气孔导度模型〔Jarvis模型12种,Ball-Berry-Leuning(BBL)模型2种〕的参数进行了拟合,筛选出5种典型树种夏季最优气孔导度模型;结合多元逐步回归技术,分析了大气温度(Ta)、叶片与空气间饱和水汽压差(De)、光合有效辐射(PAR)、大气CO2浓度(Ca)4种环境因子对气孔导度的影响. 结果表明:杉木(Cunninghamia lanceolata)、湿地松(Pinus elliottii)、马尾松(Pinus massoniana)的最优模型均为BBL-B2模型;沉水樟(Cinnamomum micranthum)的最优模型为BBL-B1模型;柑桔(Citrus reticulata)的最优模型为Jarvis-J12模型;饱和水汽压差(De)为影响鄱阳湖流域5种典型树种夏季气孔导度的最敏感因素.

     

  • [1] 吴建国,吕佳佳.气候变化对我国干旱区分布及其范围的潜在影响[J].环境科学研究,2009,22(2):199-206.
    [2] PIELKE R A. Land use and climate change [J].Sci,2005,310:1625-1626.
    [3] FEDDEMA J J,OLESON K W,BONAN G B,et al.The importance of land-over change in simulating future climates[J]. Sci,2005,310:1674-1678.
    [4] SELLERS P J,BOUNOUA L,COLLATZ G J,et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate [J]. Sci,1996,271:1402-1406.
    [5] 周莉,周广胜,贾庆宇.盘锦湿地芦苇叶片气孔导度的模拟[J].气象与环境学报,2006,22(4):42-46.
    [6] COWAN I R,FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment [J]. Symposia Society for Experimental Biology,1977,31:471-505.
    [7] JARVIS P G,MORISON J I L.The control of transpiration and photosynthesis by the stomata[C]//JARVIS P G,MANSFIELD T A. Stomatal physiology.Cambridge: University Press,1981:247-279.
    [8] ZEIGER E,FARQUHAR G D,COWAN I R. Stomatal function [M].Stanford,USA: Stanford University Press,1987:229-251.
    [9] CARLSON T N. Modeling stomatal resistance: an overview of the 1989 workshop at the Pennsylvania State University [J]. Agricultural and Forest Meteorology,1991,54:103-106.
    [10] MCNAUGHTON K G,JARVIS P G. Effects of spatial scale on stomatal control of transpiration [J]. Agricultural and Forest Meteorology,1991,54: 279-302.
    [11] 王玉辉,周广胜.羊草叶片气孔导度对环境因子的响应模拟[J].植物生态学报,2000,24(6):739-743.
    [12] 阮成江,李代琼.黄土丘陵区沙棘的蒸腾特性及影响因子[J].应用与环境生物学报,2001,7(4):327-331.
    [13] 莫兴国.冠层表面阻力与环境因子关系模型及其在蒸散估算中的应用[J].地理研究,1997,16(2):81-88.
    [14] FRANKS P J,COWAN I R,FARQUHAR G D. The apparent feed forward response of stomata to air vapor deficit: information revealed by different experimental procedures with two rainforest trees [J].Plant Cell and Environment,1997,20 (4):142-145.
    [15] JUAN F,GARCIA Q,BARROS A P. Incorporating canopy physiology into a hydrological model: photosynthesis,dynamic respiration,and stomatal sensitivity [J]. Ecological Modeling,2005,185:29-49.
    [16] 齐华,于贵瑞,刘允芬,等.柑橘叶片气孔导度的环境响应模型研究[J].中国生态农业学报,2004(4):43-48.
    [17] WANG  S,DONG D. Enhancement of the warming trend in China [J].Geophysical Research Letters,2000,27(16):2581-2584.
    [18] JARVIS P G.The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field [J]. Philosophical Transpirations of the Royal Society of London B,1976,273:593-610.
    [19] BALL J T. An analysis of stomatal conductance [D]. Stanford,USA: Stanford University,1988:89-90.
    [20] 吴大千,徐飞,郭卫华,等.中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较[J].生态学报,2007,27(10):4141-4148.
    [21] CHEN D X,LEITH J H. Two dimensional model of water transport in the zone and plant for container-grown chrysanthemum [J]. Agricultural and Forest Meteorology,1992,59:129-148.
    [22] MASSMAN W J,KAUFMANN M R. Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains [J]. Agricultural and Forest Meteorology,1991,54:155-167.
    [23] MASSMAN W J,RASCHKE K. Stomatal action [J]. Annual Review of Plant Physiology,1975,26:309-400.
    [24] SEEN D L,CHEHBOUNI A,NJOKI E,et al. An approach to couple vegetation functioning and soil-vegetation-atmosphere-transfer models for semiarid grasslands during the HAPEX-Sahel experiment [J]. Agricultural and Forest Meteorology,1997,83(1/2): 49-74.
    [25] HOFSTRA G,HESKETH J D. The effect of temperature on stomatal aperture in different species [J]. Canadian Journal of Botany,1969,47:1307-1310.
    [26] BALL H T,WOODROW I E,BERRY J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[C]//BIGGINS J. Progress in photosynthesis research. Leiden: Martinus Nijhoff Publisher,1987:221-224.
    [27] LEUNING R. A critical appraisal of a combined stomatal-photosynthesis model C3 plants [J]. Plant Cell and Environment,1995,18:339-355.
    [28] 于强,任保华,王天铎,等.C3植物光合作用日变化的模拟[J].大气科学,1998,22(6):867-880.
    [29] 唐微,朱名安,刘俊.C3,C4及CAM植物的光合速率变化及叶绿素含量的比较[J].湖北农业科学,2002(4):39-40.
    [30] CHAPIN F S,BLOOM A J,FIELD C B,et al. Plant responses to multiple environmental factors [J].Bioscience,1987,37 (1):49-57.
    [31] 梁剑,张健.多元统计分析在四川退耕还林区土壤肥力评价中的运用[J].环境科学研究,2008,21(2):68-72.
    [32] 凌旌瑾,顾咏洁,许春梅,等.黄浦江和苏州河的着生藻类与水质因子关系的多元分析[J].环境科学研究,2008,21(5):184-189.
  • 加载中
计量
  • 文章访问数:  1495
  • HTML全文浏览量:  9
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-11
  • 修回日期:  2009-09-16
  • 刊出日期:  2010-01-25

目录

    /

    返回文章
    返回