留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机配体对膨润土负载纳米零价铁还原Cr(Ⅵ)的影响

孙 芳 何广平 吴宏海 罗 京

孙 芳, 何广平, 吴宏海, 罗 京. 有机配体对膨润土负载纳米零价铁还原Cr(Ⅵ)的影响[J]. 环境科学研究, 2011, 24(4): 461-466.
引用本文: 孙 芳, 何广平, 吴宏海, 罗 京. 有机配体对膨润土负载纳米零价铁还原Cr(Ⅵ)的影响[J]. 环境科学研究, 2011, 24(4): 461-466.
SUN Fang, HE Guang-ping, WU Hong-hai, LUO Jing. Influence of Various Organic Ligands on the Removal of Cr(Ⅵ)by Bentonite-Supported Nanoscale Zero-Valent Iron[J]. Research of Environmental Sciences, 2011, 24(4): 461-466.
Citation: SUN Fang, HE Guang-ping, WU Hong-hai, LUO Jing. Influence of Various Organic Ligands on the Removal of Cr(Ⅵ)by Bentonite-Supported Nanoscale Zero-Valent Iron[J]. Research of Environmental Sciences, 2011, 24(4): 461-466.

有机配体对膨润土负载纳米零价铁还原Cr(Ⅵ)的影响

基金项目: 国家自然科学基金项目(40773080,41072034);广东省自然科学基金项目(10151063101000028)

Influence of Various Organic Ligands on the Removal of Cr(Ⅵ)by Bentonite-Supported Nanoscale Zero-Valent Iron

  • 摘要: 六价铬〔Cr(Ⅵ)〕因具有剧毒性和致癌性而被广泛关注. 以Fe(Ⅲ)与 NaBH4反应制得负载型的纳米铁(B-NZVI),并对该材料做了TEM和AAS的表征;深入考察B-NZVI去除Cr(Ⅵ)的动力学规律,以及草酸、柠檬酸、草酸钠、柠檬酸钠等有机配体对膨润土负载纳米零价铁还原Cr(Ⅵ)去除速率的影响,并对其影响机理进行初步探讨. 结果表明,膨润土负载纳米零价铁对Cr(Ⅵ)的去除行为符合Langmuir-Hinshelwood模型,其kobs为0.011 97 min-1;草酸、柠檬酸、草酸钠和EDTA可促进B-NZVI对Cr(Ⅵ)的还原去除作用;柠檬酸钠则起到抑制作用. a

     

  • [1] WANG X F , XING M L , SHEN Y, et al. Oral administration of Cr(Ⅵ) induced oxidative stress,DNA damage and apoptotic cell death in mice[J].Toxicology,2006,228:16-23.
    [2] MIRETZKY P, CIRELLI A F.Cr (Ⅵ) and Cr (Ⅲ) removal from aqueous solution by raw and modified lignocellulosic materials:a review[J].J Hazard Mater,2010,180:1-19.
    [3] BHATTI M S, REDDY A S, THUKRAL A K. Electrocoagulation removal of Cr(Ⅵ) from simulated wastewater using response surface methodology[J].J  Hazard Mater,2009,172:839-846.
    [4] BARAL S S, DAS N, CHAUDHURY G R,et al. A preliminary study on the adsorptive removal of Cr(Ⅵ) using seaweed, Hydrilla verticillata[J].J Hazard Mater, 2009,171:358-369.
    [5] HONG H L, JIANG W T, ZHANG X L,et al.Adsorption of Cr(Ⅵ) on STAC-modified rectorite[J].Applied Clay Science,2008,42:292-299.
    [6] SEN M, DASTIDAR M G, ROYCHOUDHURY P K . Biological removal of Cr(Ⅵ) using Fusarium solani in batch and continuous modes of operation[J].Enzyme and Microbial Technology,2007,41:51-56.
    [7] GODEA F, PEHLIVANB E. Removal of Cr(Ⅵ) from aqueous solution by two lewatit-anion exchange resins[J].J Hazard Mater B,2005,119:175-182.
    [8] YOON J, SHIM E, BAE S,et al. Application of immobilized nanotubular TiO2 electrode for photocatalytic hydrogen evolution: Reduction of hexavalent chromium Cr(Ⅵ) in water[J].J Hazard Mater,2009,161:1069-1074.
    [9] ZHANG Y, LI Q,TANG R,et al. Electrocatalytic reduction of chromium by poly(aniline-co-o-aminophenol): an efficient and recyclable way to remove Cr(Ⅵ) in wastewater[J].Applied Catalysis B: Environmental,2009,92:351-356.
    [10] ZHOU H, HE Y, LAN Y, et al. Influence of complex reagents on removal of chromium(Ⅵ) by zero-valent iron[J].Chemosphere,2008,72:870-874.
    [11] LIU T Z, RAO P H, lo IRENE M C. Influences of humic acid, bicarbonate and calcium on Cr(Ⅵ) reductive removal by zero-valent iron[J].Sci Total Environ,2009,407:3407-3414.
    [12] LI A, TAI C,ZHAO Z S,et al. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles[J].Environ Sci Technol,2007,41(19):6841-6846
    [13] HOCH L B, MACK E J, HYDUTSKY B W,et al. Synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J].Environ Sci Technol,2008,42(7):2600-2605.
    [14] NAJA G, HALASZ A, THIBOUTOT S, et al. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles[J]. Environ Sci Technol, 2008, 42(12):4364-4370.
    [15] Z MA,SHAHWAN T,ERO G LU A E,et al. Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions[J].Applied Clay Science,2009,43:172-181.
    [16] 尹丽京,李益民,张璐吉,等.羟基铝柱撑膨润土负载纳米铁还原Cr(Ⅵ)[J].环境科学,2009,30(4):1055-1059.
    [17] YUAN P, FAN M D, YANG D,et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium 〔Cr(Ⅵ)〕from aqueous solutions[J].J Hazard Mater,2009,166:821-829.
    [18] WANG Y J, CHEN J H, CUI Y X,et al. Effects of low-molecular-weight organic acids on Cu(Ⅱ) ads-orption onto hydroxyapatite nanoparticles[J].J Hazard Mater,2009,162:1135-1140.
    [19] VAN HEES P A W, JONES D L, NYBERG L,et al.Modelling low molecular weight organic acid dynamics in forest soils[J].Soil Biology & Biochemistry,2005,37:517-531.
    [20] VAN HEES P A W, JONES D L,JENTSCHKE G,et al. Organic acid concentrations in soil solution: effects of young coniferous trees and ectomycorrhizal fungi[J].Soil Biology & Biochemistry,2005,37:771-776.
    [21] NOGUEIRA M G, PAZOS M, SANROMAN M A,et al. Improving on electrokinetic remediation in spiked Mn kaolinite by addition of complexing agents[J].Electrochimica Acta,2007,52:3349-3354.
    [22] 樊明德,袁鹏, 陈天虎,等.蒙脱石载体对“核-壳”结构零价铁纳米颗粒制备及其尺寸控制的影响与机理[J].科学通报,2010,55(9):827-834.
    [23] 国家环境保护总局.水和废水检测分析方法[M].4版.北京:中国环境科学出版社,2002:344-349.
    [24] 刘勇.零价铁还原去除污染水体中的Cr(Ⅵ)[D].杭州:浙江大学,2006.
    [25] LAN Y Q, LI C, MAO J D,et al. Influence of clay minerals on the reduction of Cr6+ by citric acid [J].Chemosphere,2008,71:781-787.
    [26] HUG S J,LAUBSCHER H U.Iron(Ⅲ) catalyzed photochemical reduction of chromium(Ⅵ) by oxalate and citrate in aqueous solutions[J]. Environ Sci Technol,1997,31:160-170.
    [27] 李梦龙.化学数据速查手册[M].北京:化学工业出版社,2003.
    [28] LIU J X,WANG C,SHI J Y,et al. Aqueous Cr (Ⅵ) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters[J].J Hazard Mater,2009,163:370-375.
  • 加载中
计量
  • 文章访问数:  1314
  • HTML全文浏览量:  15
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-10
  • 修回日期:  2010-11-22
  • 刊出日期:  2011-04-25

目录

    /

    返回文章
    返回