留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷肥和稻草对土壤重金属形态、微生物活性和植物有效性的影响

胡星明 袁新松 王丽平 华攀玉 张天澍

胡星明, 袁新松, 王丽平, 华攀玉, 张天澍. 磷肥和稻草对土壤重金属形态、微生物活性和植物有效性的影响[J]. 环境科学研究, 2012, 25(1): 77-82.
引用本文: 胡星明, 袁新松, 王丽平, 华攀玉, 张天澍. 磷肥和稻草对土壤重金属形态、微生物活性和植物有效性的影响[J]. 环境科学研究, 2012, 25(1): 77-82.
HU Xing-ming, YUAN Xin-song, WANG Li-ping, HUA Pan-yu, ZHANG Tian-shu. Effects of Phosphate Fertilizer and Rice Straw on Soil Heavy Metal Fraction,Microbial Activity and Phytoavailability[J]. Research of Environmental Sciences, 2012, 25(1): 77-82.
Citation: HU Xing-ming, YUAN Xin-song, WANG Li-ping, HUA Pan-yu, ZHANG Tian-shu. Effects of Phosphate Fertilizer and Rice Straw on Soil Heavy Metal Fraction,Microbial Activity and Phytoavailability[J]. Research of Environmental Sciences, 2012, 25(1): 77-82.

磷肥和稻草对土壤重金属形态、微生物活性和植物有效性的影响

基金项目: 安徽省优秀青年人才项目(2010SQRL147);安徽省教育厅自然科学项目(KJ2010B437)

Effects of Phosphate Fertilizer and Rice Straw on Soil Heavy Metal Fraction,Microbial Activity and Phytoavailability

  • 摘要: 采用原位化学固定法,通过向土壤中添加修复剂磷肥和稻草,研究其对土壤中重金属形态、植物有效性和土壤微生物活性的影响.结果表明:添加磷肥和稻草可改变土壤中重金属Cu、Cd、Zn和Pb的形态分布,使土壤中重金属高植物有效性的酸提取态比例降低;其中以磷肥+稻草组下降最多,酸提取态Cu比例从对照的50.4%降至8.7%,酸提取态Cd从56.2%降至29.5%,酸提取态Zn从32.9%降至25.1%,酸提取态Pb从21.1%降至检测限以下.磷肥、稻草及磷肥+稻草修复土壤后,4种重金属在油菜(Brassica napus L.)中的含量显著降低,且油菜干生物量由对照的0.46 g分别增至0.97、1.53和2.28 g.同时土壤中微生物活力得到提高,土壤微生物生物量碳由对照的19.16 mg/kg最高增至966.71 mg/kg,而代谢呼吸率由对照的21.95 mg/(kg.h)最大升至158.63 mg/(kg.h).证明磷肥和稻草可降低重金属对油菜和土壤微生物的毒性胁迫,改善污染土壤质量,促进植物和土壤微生物的生长.

     

  • [1] LEES H;LEE J S;CHOI Y J,In situ stabilization of cadmium-,lead-,and zinc-contaminated soil using various amendments,Chemosphere,2009.
    [2] Leitgib, L ;Kalman, J ;Gruiz, K,Comparison of bioassays by testing whole soil and their water extract from contaminated sites,Chemosphere ,2007, 66(2).
    [3] 赵庆;郑祥民;胡志平.崇明岛滨岸滩地植物系统中重金属元素的分布累积与相互关系[J].环境科学研究,2007(6)
    [4] 李爱军;张旭红;苏玉红.骨炭修复重金属污染土壤和降低基因毒性的研究[J].环境科学,2007(2)
    [5] 马利民;唐燕萍;陈玲.Zn,Cu和Ni污染土壤中重金属的化学固定[J].环境化学,2009(1)
    [6] GEEBELEN W;SAPPIN-DIDIER V;RUTENS A,Evaluation of cyclonic ash,commercial Na-silicates,lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders(Belgium),Environment International,2006.
    [7] Querol X;Alastuey A;Moreno N,Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash,Chemosphere ,2006, 62(02).
    [8] Sneddon, IR ;Orueetxebarria, M ;Hodson, ME ;Schofield, PF ;Valsami-Jones, E,Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: A leaching column study,Environmental Pollution ,2006, 144(3).
    [9] RAURET G;LOPENZ-SANCHEZ J F;SAHUQUILLO A,Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials,Journal of Environmental Monitoring,1999(1).
    [10] Geebelen W;Adriano DC;van der Lelie D,Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils,Plant and Soil ,2003, 249(01).
    [11] 中国土壤学会农业化学专业委员会,土壤农业化学常规分析方法,北京:科学出版社,1983.
    [12] KUMPIENE J;LAGERKYIST A;MAURICE C,Stabilization of Pb-and Cu-contaminated soil using coal fly ash and peat,Environment International,2007.
    [13] RUTTENS A;ADRIAENSEN K;MEERES E,Long-term sustainability of metal immobilization by soil amendments:cyclonic ashes versus lime addition,Environmental Pollution ,2010, 158.
    [14] 王军;徐晓春;陈芳,钢陵林冲尾矿库复垦土壤的重金属污染评价,合肥工业大学学报,2005(2).
    [15] Cao X;Wahbi A;Ma L,Immobilization of Zn,Cu,and Pb in contaminated soils using phosphate rock and phosphoric acid,Journal of Hazardous Materials ,2009, 164(2-3).
    [16] BROWN S;SPRENGER M;MAXEMCHUK A,Ecosystem function in alluvial tailing after biosolids and lime addition,Journal of Environmental Quality,2005.
    [17] Min Liao ;Xiao M. Xie,Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area,Ecotoxicology and Environmental Safety ,2007, 66(2).
    [18] Brown S;Chaney R;Hallfrisch J;Ryan J A Berti W R,In situ soil treatments to reduce the phyto-and bioavallability of lead,zinc and cadmium,Journal of Environmental Quality ,2004, 33.
    [19] GREGORICH E G;WEN G;VORONEY R P,Calibration of rapid direct chloroform extraction method for measuring soil microbial biomass C,Soil Biology and Biochemistry ,1990, 22.
    [20] 赵志强;牛军峰;全燮.环境中有害金属植物修复的生理机制及进展[J].环境科学研究,2000(5)
    [21] Yao H Y;Xu J M;Huang C Y,Substrate utilization pattern,biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils,Geoderma ,2003, 115.
    [22] 龙健;黄昌勇;腾应.重金属污染矿区复垦土壤微生物生物量及酶活性的研究[J].中国生态农业学报,2004(3)
    [23] P(E)REZ-DE-MORA A;ORTEGA-CALVO J J;CABRERA F,Changes in enzyme activities and microbial biomass after "in situ" remediation of a heavy metal-contaminated soil,Applied Soil Ecology,2005.
    [24] Wasay SA;Barrington S;Tokunaga S,Organic acids for the in situ remediation of soils polluted by heavy metals:Soil flushing in columns,Water Air and Soil Pollution ,2001, 127(02).
    [25] 李佳华;林仁漳;王世和.几种固定剂对镉污染土壤的原位化学固定修复效果[J].生态环境,2008(6)
  • 加载中
计量
  • 文章访问数:  1632
  • HTML全文浏览量:  18
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 刊出日期:  2012-01-25

目录

    /

    返回文章
    返回