留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分形维数在城市排水管网规划中的应用

程永前 张玥 宋乾武 戴建坤 赵秀芹

程永前, 张玥, 宋乾武, 戴建坤, 赵秀芹. 分形维数在城市排水管网规划中的应用[J]. 环境科学研究, 2012, 25(1): 89-94.
引用本文: 程永前, 张玥, 宋乾武, 戴建坤, 赵秀芹. 分形维数在城市排水管网规划中的应用[J]. 环境科学研究, 2012, 25(1): 89-94.
CHENG Yong-qian, ZHANG Yue, SONG Qian-wu, DAI Jian-kun, ZHAO Xiu-qin. Application of Fractal Dimension in Urban Drainage Pipe Network Planning[J]. Research of Environmental Sciences, 2012, 25(1): 89-94.
Citation: CHENG Yong-qian, ZHANG Yue, SONG Qian-wu, DAI Jian-kun, ZHAO Xiu-qin. Application of Fractal Dimension in Urban Drainage Pipe Network Planning[J]. Research of Environmental Sciences, 2012, 25(1): 89-94.

分形维数在城市排水管网规划中的应用

基金项目: 国家水体污染控制与治理科技重大专项(2008ZX07211-006)

Application of Fractal Dimension in Urban Drainage Pipe Network Planning

  • 摘要: 城镇体系空间结构是城镇体系的重要特征之一,对其的定量研究对城市规划具有重要意义.以分形理论为基础,采用集聚维数研究了东莞市各镇区体系的空间相关性.结果表明:镇区之间的集聚程度不大,其大小与经济发展状况和地理位置有较好的对应关系.通过对几个镇区排水管网的长度-半径维数的测算,揭示出镇区排水管网也具有分形特征.综合分析镇区排水管网的规模指标数值可发现规划中存在的问题,并提出如下调整措施:①对于排水管网分形维数较好,规模指标欠佳的镇区,应加快排水管网的规模建设;②对于排水管网规模指标较好,而分形维数较差的镇区,应优化排水管网的平面布置规划;③对于排水管网分形维数及规模指标均欠佳的镇区,需要从排水管网的平面布置规划和建设规模两方面进行优化和调整.

     

  • [1] TELESCA L;LAPENNA V;MACCIATO M,Mono-and multifractal investigation of scaling properties in temporal patterns of seismic sequences,Chaos,Solitons and Fractals,2004.
    [2] 姜世国;周一星,北京城市形态的分形集聚特性及其实践意义,地理研究,2006(2).
    [3] 陈彦光;刘继生,城市体系时空演化的广义分形维数数:刻西城市资源分享层间的理论基础、计算方法与应用实例,地理科学,2003(5).
    [4] BATTY M;XIE Y,Preliminary evidence for a theory of the fractal city,Environment and Planning,1996.
    [5] BATTY M;LONGLEY P;FORTHERINGHAM A S,Urban growth and form:scaling,fractal geometry and decision-limited aggregation,Environment and Planning,1989.
    [6] DONALD L T,The relationship of fractals in geophysics to "the new science",Chaos,Solitons and Fractals,2004.
    [7] BENGUIGUI L,A fractal analysis of the public transportation system of Paris,Environment and Planning A,1995, 27(07).
    [8] DENDRINOS D S;EL NASCHIE M S,Nonlinear dynamics in urban and transportation analysis,Chaos Soliton & Fractals (Special Issue),1994.
    [9] 孙壮志.城市交通网络形态特征分形计量研究[J].交通运输系统工程与信息,2007(1)
    [10] ALBERT R;JEONG H;A-L BARABASI,Diameter of the world wide web,Nature,1999.
    [11] 王秋平;张琦;刘茂.基于分形方法的城市路网交通形态分析[J].城市问题,2007(6)
    [12] 周江评;崔功豪;张京祥.城镇交通网络信息图谱研究刍议[J].地理研究,2001(4)
    [13] Schuller DJ. ;Jeong GD. ;Rao AR.,Fractal characteristics of dense stream networks,Journal of Hydrology,2001, 243(1-2).
    [14] TELESCA L;LAPENNA V;MACCIATO M,Mono-and multifractal investigation of scaling properties in temporal patterns of seismic sequences,Chaos,Solitons and Fractals,2004.
    [15] ENDRE D;GABOR T;GABOR B,Fractal dimension estimations of drainage network in the Carpathian-Pannonian system,Global and Planetary Change,2007.
    [16] 李传武;张小林;吴威,基于分形理论的江苏沿江城镇体系研究,长江流域资源与环境,2010(1).
    [17] A-L BARABASI;ALBERT,Emergence of scaling in random networks,Science,1999.
    [18] 夏永久.基于分形理论的皖江城市带城镇体系结构研究[J].资源开发与市场,2009(1)
    [19] 李传武;黄润;尚正永,基于分形理论的安徽省城镇体系研究,合肥师范学院学报,2009(5).
    [20] 刘耀彬;陈志;杨益明.湖北省城市体系空间结构发展研究[J].华中科技大学学报(城市科学版),2003(3)
    [21] 陈彦光;罗静.河南省城市交通网络的分形特征[J].信阳师范学院学报(自然科学版),1998(2)
    [22] 刘妙龙;黄蓓佩.上海大都市交通网络分形的时空特征演变研究[J].地理科学,2004(2)
    [23] Yongmei Lu ;Junmei Tang,Fractal dimension of a transportation network and its relationship with urban growth: a study of the Dallas - Fort Worth area,Environment and Planning. B, Planning and Design,2004, 31(6).
    [24] Kim K S;Bengguigui L;Marinov M,The fractal structure of Seoul's public transportation system,Cities,2003, 20(01).
    [25] 苏伟忠;杨桂山;甄峰.基于无尺度结构的苏南乡镇公路网分析[J].地理研究,2007(5)
    [26] 徐军;罗嵩龄.公路网连通性研究[J].中国公路学报,2000(1)
    [27] BENGUIGUI L;DAOUD M,Is the suburban railway system a fractal,Geographical Analysis,1991.
    [28] FRANKHOUSER P,Aspects fractals des structures urbaines,L'Es-Pace Geographique,1990(1).
    [29] BATTY M;LONGLEYPA,Fractal cities:a geometry of form and function,London,UK:Academic Press,1994.
    [30] KENNETH F;曾文曲,分形几何:数学基础及其应用,北京:人民邮电出版社,2007.
    [31] MUHAMMAD S,Linear and nonlinear,scalar and vector transport processes in heterogeneous media:fractals,percolation,and scaling laws,Chemical Engineering Journal,1996.
    [32] Mandelbrot B B;Wheeler JA,The Fractal Geometry of Nature,American Journal of Physics,1983, 51(03).
  • 加载中
计量
  • 文章访问数:  1345
  • HTML全文浏览量:  19
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 刊出日期:  2012-01-25

目录

    /

    返回文章
    返回