留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刁江底泥砷形态的化学分级法与XANES方法比较

蹇丽 黄泽春 刘永轩 杨子良 胡天斗

蹇丽, 黄泽春, 刘永轩, 杨子良, 胡天斗. 刁江底泥砷形态的化学分级法与XANES方法比较[J]. 环境科学研究, 2012, 25(7): 820-825.
引用本文: 蹇丽, 黄泽春, 刘永轩, 杨子良, 胡天斗. 刁江底泥砷形态的化学分级法与XANES方法比较[J]. 环境科学研究, 2012, 25(7): 820-825.
JIAN Li, HUANG Ze-chun, LIU You-xuan, YANG Zi-liang, HU Tian-dou. Comparative Analysis of Arsenic Speciation in Sediments of the Diaojiang River Using X-Ray Absorption Near Edge Structure Spectra and Sequential Chemical Extraction[J]. Research of Environmental Sciences, 2012, 25(7): 820-825.
Citation: JIAN Li, HUANG Ze-chun, LIU You-xuan, YANG Zi-liang, HU Tian-dou. Comparative Analysis of Arsenic Speciation in Sediments of the Diaojiang River Using X-Ray Absorption Near Edge Structure Spectra and Sequential Chemical Extraction[J]. Research of Environmental Sciences, 2012, 25(7): 820-825.

刁江底泥砷形态的化学分级法与XANES方法比较

基金项目: 国家自然科学基金项目(40671169)

Comparative Analysis of Arsenic Speciation in Sediments of the Diaojiang River Using X-Ray Absorption Near Edge Structure Spectra and Sequential Chemical Extraction

  • 摘要: 采用XANES(X射线近边分析)方法和化学分级法,研究了刁江污染源区尾砂及刁江底泥的砷形态组成特征. XANES方法结果表明,尾砂中砷的形态主要以毒砂(FeAsS)存在,其相对百分含量为63%~99%;而刁江底泥中的砷形态主要是毒砂、砷酸盐和亚砷酸盐,其中毒砂的比例较高,表现出典型的尾砂污染特征. 化学分级法结果表明,尾砂中砷形态主要是残渣态砷(Res-As),而底泥中的砷主要以铁合态、钙合态及残渣态形式存在. 刁江底泥中毒砂相对百分含量和残渣态砷随着与污染源区距离的增大而减小,砷酸盐和亚砷酸盐则呈相反的趋势. 化学分级法和XANES方法所反映的刁江底泥和污染源的砷形态组成和变化趋势总体上较为一致,但这2种方法所获得的定量数据存在一定的差异.

     

  • [1] 肖细元,陈同斌,廖晓勇,等.中国主要含砷矿产资源的区域分布与砷污染问题.地理研究,8,7(1):201-212.
    [2] MANDAL B K,SUZUKI K T.Arsenic round the world:a review.Talanta,2,8(1):201-235.
    [3] JACK C N G,WANG J P,AMJAD S.A global health problem caused by arsenic from natural sources.Chemosphere,3,2(9):1353-1359.
    [4] TAGGART M A,CARLISLE M,PAIN D J,et al.The distribution of arsenic in soils affected by the Aznalcollar mine spill, SW Spain.Sci Total Environ,4,3(1/2/3):137-152.
    [5] CUI Chunguo,LIU Zhihui.Chemical speciation and distribution of arsenic in water,suspended solids and sediment of Xiangjiang River,China .Sci Total Environ,8,7(1):69-82.
    [6] WENZEL W W,KIRCHBAUMER N,PROHASKA T,et al.Arsenic fractional in soil using an improved sequential extraction procedure .Analytical Chemical Acta,1,6:309-323.
    [7] MIRO P E,DAVID P.Dynamics of arsenic in the mining sites of Pine Creek Geosyncline,Northern Australia .Sci Total Environ,7,9(2/3):201-215.
    [8] SHERMAN D M,RANDALL S R.Surface complexation of arsenic(Ⅴ) to iron(Ⅲ) (hydr)oxides:structural mechanism from ab initio molecular geometries and EXAFS spectroscopy.Geochimica et Cosmochimica Acta,3,7(22):4223-4230.
    [9] ANDREA L F,GORDON E B J,TRACY N T,et al.Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy .American Mineralogist,8,3(5/6):553-568.
    [10] ANDREW G G,DAVID A P,PAUL R L,et al.Arsenic speciation in surface waters and sediments in a contaminated waterway:an IC-ICP-MS and XAS based study.Applied Geochemistry,3,8(9):1387-1397.
    [11] PAKTUNC D,FOSTER A,HEALD S,et al.Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy .Geochimica et Cosmochimica Acta,4,8(5):969-983.
    [12] HUANG Zechun,CHEN Tongbin,LEI Mei,et al.Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and-hypertoleraplants.Environ Sci Technol,8,2(14):5106-5111.
    [13] 周永章,宋书巧,张澄博,等.河流对矿山及矿山开发的水环境地球化学响应.地质通报,5,4(10/11):940-944.
    [14] 周永章,宋书巧,杨志军,等.河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应:以广西刁江流域为例.地质通报,5,4(10/11):947-951.
    [15] 蹇丽,黄泽春,刘永轩,等.采矿业污染河流底泥及河漫滩沉积物的粒径组成与砷形态分布特征.环境科学学报,0,0(9):1862-1870.
    [16] 蹇丽,黄泽春,刘永轩,等.刁江水体多相介质中As、Zn和Pb的空间和季节分布规律.环境科学研究,0,3(4):445-451.
    [17] 蔡明海,梁婷,吴德成,等.广西大厂锡多金属矿田亢马矿床地质特征及成矿时代.地质学报,5,9(2):262-268.
    [18] 魏梁鸿,周文琴.中国主要含砷矿产资源的区域分布与砷污染问题.湖南地质,2,1(3):259-262.
    [19] 刘永轩,黄泽春,蹇丽,等.广西刁江沿岸土壤As、Pb和Zn污染的分布规律差异.环境科学研究,0,3(4):485-490.
    [20] 冯卫卫,罗锡明,刘丹丹.寨上金矿矿区河流沉积物中砷的形态分析.生态环境学报,1,0(4):659-662.
    [21] 张国祥,杨居荣,华路.土壤环境中的砷及其生态效应.土壤,6,8(2):64-68.
    [22] 魏显有,王秀敏,刘云惠,等.土壤中砷的吸附行为及其形态分布研究.河北农业大学学报,9,2(3):28-30.
    [23] SAMUEL V H,RUDY S,CARLO V,et al.Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples .Environ Pollut,3,2(3):323-342.
    [24] JENNINGS S R,DOLLHOPF D J,INSKEEP W P.Acid production from sulfide minerals using hydrogen peroxide weathering .Applied Geochemistry,0,5(2):235-243.
    [25] MUNK L,FAURE G,KOLKI R.Geochemical evolution of solutions derived from experimental weathering of sulfide-bearing rocks .Applied Geochemistry,6,1(7):1123-1134.
    [26] BREED A W,HARRISON S T L,HANSFORD G S.A preliminary investigation of the ferric leaching of a pyrite/arsenopyrite flotation concentrate.Minerals Engineering,7,0(9):1023-1030.
    [27] YU Yunmei,ZHU Yongxuan,GAO Zhenming.Stability of arsenopyrite and As(Ⅲ) in low-temperature acidic solutions.Science in China Series D:Earth Science,4,7(5):427-436.
    [28] 黄晨晖.土地利用对岩溶水水质水量的影响:以广西刁江流域为例.桂林:广西师范大学,2008:10-17.
    [29] BHUMBLA D K,KEEFER R F.Arsenic mobilization and bioavailability in soils //Arsenic in the environment:Part Ⅰ.cycling and characterization.Nriagu JO:John Wiley and Sons,Inc,1994:51-82.
    [30] HUANG Yanchun.Arsenic distribution in soils //Arsenic in the environment:Part I.cycling and characterization.Nriagu JO:John Wiley and Sons,Inc,1994:17-51.
  • 加载中
计量
  • 文章访问数:  1438
  • HTML全文浏览量:  18
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-05
  • 修回日期:  2012-02-28
  • 刊出日期:  2012-07-25

目录

    /

    返回文章
    返回