留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SHMP分散配制用于环境风险模拟研究的纳米ZnO颗粒溶胶

陈铮 罗专溪 颜昌宙 姚多喜

陈铮, 罗专溪, 颜昌宙, 姚多喜. SHMP分散配制用于环境风险模拟研究的纳米ZnO颗粒溶胶[J]. 环境科学研究, 2012, 25(8): 927-932.
引用本文: 陈铮, 罗专溪, 颜昌宙, 姚多喜. SHMP分散配制用于环境风险模拟研究的纳米ZnO颗粒溶胶[J]. 环境科学研究, 2012, 25(8): 927-932.
CHEN Zheng, LUO Zhuan-xi, YAN Chang-zhou, YAO Duo-xi. Using SHMP for Preparation of the Dispersion of ZnO Nanoparticles for Environmental Risk Study[J]. Research of Environmental Sciences, 2012, 25(8): 927-932.
Citation: CHEN Zheng, LUO Zhuan-xi, YAN Chang-zhou, YAO Duo-xi. Using SHMP for Preparation of the Dispersion of ZnO Nanoparticles for Environmental Risk Study[J]. Research of Environmental Sciences, 2012, 25(8): 927-932.

SHMP分散配制用于环境风险模拟研究的纳米ZnO颗粒溶胶

基金项目: 国家自然科学基金项目(41001327)

Using SHMP for Preparation of the Dispersion of ZnO Nanoparticles for Environmental Risk Study

  • 摘要: 选择SHMP(六偏磷酸钠)作分散剂,研究超声时间与静置时间对商购纳米ZnO的优化分散效果,以配制出用于环境风险模拟研究中的分散粒径小、效果稳定且浓度较高的纳米ZnO颗粒溶胶. 结果表明,相同条件下加分散剂的体系分散效果好于不加分散剂体系. 最佳优化分散方法:在100 mL超纯水中先加入45 mg SHMP作分散剂,再加入0.5 g的商购纳米ZnO,超声60 min后静置6 d,最终得到的颗粒溶胶平均粒径为(176.5±15)nm (纳米粒度-Zeta电位仪),TEM表征粒径为60~90 nm,Zeta电位为(-64.7±5.64)mV,实测分散浓度为(95.87±4.37)mg/L,其稳定性基本可以维持5 d.

     

  • [1] CHENG X L,ZHAO H,HUO L H,et al.ZnO nanoparticulate thin film:preparation,characterization and gas-sensing property .Sensor Actuat B:Chem,4,2(2):248-252.
    [2] AITKEN R J,CHAUDHRY M Q,BOXALL A B A,et al.Manufacture and use of nanomaterials:current status in the UK and global trends .Occup Med-Oxford,6,6(5):300-306.
    [3] BAUN A,HARTMANN N B,GRIEGER K D,et al.Setting the limits for engineered nanoparticles in European surface waters:are current approaches appropriate? .J Environ Monitor,9,1(10):1774-1781.
    [4] ADAMS L K,LYON D Y,ALVAREZ P J J.Comparative eco-toxicity of nanoscale TiO2,SiO2 and ZnO water suspensions .Water Res,6,0(19):3527-3532.
    [5] 姚莹,杨柳燕,陈军,等.纳米ZnO对嗜热四膜虫的生态毒性研究.环境科学研究,9,2(7):833-837.
    [6] ARUOJA V,DUBOURGUIER H C,KASEMETS K,et al.Toxicity of nanoparticles of CuO,ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.Sci Total Environ,9,7(4):1461-1468.
    [7] ZHANG Yang,CHEN Yongsheng,WESTERHOFF P,et al.Stability of commercial metal oxide nanoparticles in water .Water Res,8,2(8/9):2204-2212.
    [8] LI Z,SORIAL G A,SAHLE-DEMESSIE E.ENVR 133-stability and transport of commercial metal oxide nanoparticles in aquatic systems .Abstr Pap Am Chem S,2009:238.
    [9] KELLER A A,WANG H T,ZHOU D X,et al.Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices .Environ Sci Technol,0,4(6):1962-1967.
    [10] 刘颖,陈春英.纳米材料的安全性研究及其评价.科学通报,1,6(2):119-125.
    [11] 任红轩.美国NNI评估结果对我国发展纳米科技的启示.新材料产业,2011(4):13-15.
    [12] SHALHEVET S,HARUVY N.Methods of economic valuation of the health risks associated with nanomaterials .Nato Sci Peace Secur,2009:385-395.
    [13] LU Yiping,ZHANG Mingqiang,FENG Qiming,et al.Effect of sodium hexametaphosphate on separation of serpentine from pyrite .T Nonferr Metal Soc,1,1(1):208-213.
    [14] GUPTA A,SINGH P,SHIVAKUMARA C.Synthesis of BaSO4 nanoparticles by precipitation method using sodium hexa metaphosphate as a stabilizer .Solid State Communications,0,0(9/10):386-388.
    [15] REN Lili,JIANG Man,WANG Liyan,et al.A method for improving dispersion of starch nanocrystals in water through crosslinking modification with sodium hexametaphosphate .Carbohydrate Polymers,2,7(2):1874-1876.
    [16] MACCUSPIE R I,ROGERS K,PATRA M,et al.Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions.J Environ Monitor,1,3(5):1212-1226.
    [17] HAUPTMANN P,LUCKLUM R,PUTTMER A,et al.Ultrasonic sensors for process monitoring and chemical analysis:state-of-the-art and trends .Sensor Actuat A:Phys,8,7(1/2/3):32-48.
    [18] 中国材料研究学会.纳米材料与技术应用进展第四届全国纳米材料会议论文集.北京:冶金工业出版社,2005:20-22.
    [19] RAO J P,GECKELER K E.Polymer nanoparticles:preparation techniques and size-control parameters .Progress in Polymer Science,1,6(7):887-913.
    [20] 刘甲,张林进,叶旭初.纳米氧化锌的分散与表面改性研究.无机盐工业,2010(8):28-30.
    [21] 刘桂香,徐光亮,罗庆平.室温固相化学法制备掺杂纳米氧化锌.电子元件与材料,6,5(10):37-40.
    [22] 郑蓓,葛小鹏,王志霞,等.纳米铁强化的混凝-沉淀-过滤工艺对典型印染废水中有机物去除.环境科学学报,1,1(2):245-253.
    [23] 饶伟,李定国.双电层吸附离子的动力学研究.海军工程大学学报,9,1(4):108-112.
    [24] FRENCH R A,JACOBSON A R,KIM B,et al.Influence of ionic strength,pH,and cation valence on aggregation kinetics of titanium dioxide nanoparticles .Environ Sci Technol,9,3(5):1354-1359.
    [25] TAKAI C,FUJI M,TAKAHASHI M.A novel surface designed technique to disperse silica nano particle into polymer .Colloids and Surfaces A:Physicochemical and Engineering Aspects,7,2(1):79-82.
    [26] 张瑞萍,杨静新.纳米氧化锌的分散及纳米整理剂的制备.丝绸,2006(1):27-29.
    [27] 吴建锋,赵娜,徐晓虹,等.聚丙烯酰胺凝胶法合成纳米ZnO的分散性研究.武汉理工大学学报,2009(12):35-38.
    [28] 朱磊,江红,王滨,等.纳米氧化锌的表面修饰及其机理的研究.无机材料学报,7,2(2):219-222.
    [29] YING K L,HSIEH T E,HSIEH Y F.Colloidal dispersion of nano-scale ZnO powders using amphibious and anionic polyelectrolytes .Ceramics International,9,5(3):1165-1171.
    [30] SARAVANAN M,DHIVAKAR S,JAYANTHI S S.An eco friendly and solvent free method for the synthesis of Zinc oxide nano particles using glycerol as organic dispersant .Materials Letters,2,7(1):128-130.
  • 加载中
计量
  • 文章访问数:  1982
  • HTML全文浏览量:  33
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-19
  • 修回日期:  2012-02-21
  • 刊出日期:  2012-08-25

目录

    /

    返回文章
    返回