留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度和停留时间对十溴联苯醚在污染土壤中热脱附的影响

傅海辉 黄启飞 朱晓华 何洁 陶义 孟昭福

傅海辉, 黄启飞, 朱晓华, 何洁, 陶义, 孟昭福. 温度和停留时间对十溴联苯醚在污染土壤中热脱附的影响[J]. 环境科学研究, 2012, 25(9): 981-986.
引用本文: 傅海辉, 黄启飞, 朱晓华, 何洁, 陶义, 孟昭福. 温度和停留时间对十溴联苯醚在污染土壤中热脱附的影响[J]. 环境科学研究, 2012, 25(9): 981-986.
FU Hai-hui, HUANG Qi-fei, ZHU Xiao-hua, HE Jie, TAO Yi, MENG Zhao-fu. Effects of Temperature and Residue Time on Remediation of Decabromodiphenyl Ether-Contaminated Soil by Thermal Desorption Technology[J]. Research of Environmental Sciences, 2012, 25(9): 981-986.
Citation: FU Hai-hui, HUANG Qi-fei, ZHU Xiao-hua, HE Jie, TAO Yi, MENG Zhao-fu. Effects of Temperature and Residue Time on Remediation of Decabromodiphenyl Ether-Contaminated Soil by Thermal Desorption Technology[J]. Research of Environmental Sciences, 2012, 25(9): 981-986.

温度和停留时间对十溴联苯醚在污染土壤中热脱附的影响

基金项目: 国家环境保护公益性行业科研专项(201009026)

Effects of Temperature and Residue Time on Remediation of Decabromodiphenyl Ether-Contaminated Soil by Thermal Desorption Technology

  • 摘要: 采用自配十溴联苯醚污染土壤开展热脱附试验研究,试验温度分别为200、300、325、350、400和450 ℃,停留时间为10、20、30、40、50和90 min. 分析多溴联苯醚(PBDEs,包括BDE28、BDE47、BDE66、BDE99、BDE100、BDE138、BDE153、BDE154、BDE183、BDE190、BDE196、BDE197、BDE203、BDE205、BDE206、BDE207、BDE208和BDE209)热脱附前后污染物在土壤中的浓度及总脱附率. 试验用土样中w(PBDEs)为1 136.69 mg/kg. 低温段(200和300 ℃)污染物去除率较低,在300 ℃、停留时间90 min时,残留w(PBDEs)为263.57 mg/kg,去除率为76.81%;中温段(325和350 ℃)污染物大量减少,350 ℃、停留时间40 min时,残留w(PBDEs)为114.01 mg/kg,去除率达90%;高温段(400和450 ℃),温度为450 ℃、停留时间20 min时,残留w(PBDEs)为4.81 mg/kg,去除率达99%以上. 结果表明,PBDEs去除率随温度或停留时间的增加而增大,处置试验用土样比较合理的热脱附操作条件:温度为400 ℃、停留时间为20 min.

     

  • [1] 陈荣圻.阻燃剂十溴联苯醚是不是受到禁用.印染助剂,2006,23(11):45-45.
    [2] PUCKETT J,BYSTER L,WESTERVELT S,et al. Exporting harm:the high-tech trashing of Asia [R/OL].2002[2011-05-23].http://www.ban.org/E-waste/technotrashfinalcomp.pdf.
    [3] SCHWARZER S,DE BONO A,GIULIANI G,et al.E-waste, the hidden side of IT equipment''s manufacturing and use[R/OL].2005[2011-08-20].http://www.grid.unep.ch/product/publication/download/ew_ewaste.en.pdf.
    [4] LEUNG A W,LUKSEMBURG W J.WONG A,et al.Spatial distribution of polybrominated diphenylethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in Southeast China.Environ Sci Technol,2007,41(8):2730-2737.
    [5] SCHENKER U,SOLTERMANN F,SCHERINGER M,et al.Modeling the environmental fate of polybrominated diphenyl ethers (PBDEs):the importance of photolysis for the for mation of lighter PBDEs.Environ Sci Technol,2008,42(24):9244-9249.
    [6] MENG Xiangzhou,PAN Zhaoyu,WU Junjie,et al.Occurrence of polybrominated diphenyl ethers in soil from the central Loess Plateau, China:role of regional range atmospheric transport.Chemosphere,2011,83(10):1391-1397.
    [7] HE Jianzhong,ROBROCK K R,LISA A C.Microbial reductive debromination of polybrominated diphenyl ethers(PBDEs).Environ Sci Technol,2006,40(14):4429-4434.
    [8] ROBROCK K R,KORYTAR P,ALVAREZ C L.Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers.Environ Sci Technol,2008,42(8):2845-2852.
    [9] BEZARES C J,JAFVERTC T,HUA I.Solar photodecomposition of decabromodiphenylether:products and quantum yield.Environ Sci Technol,2004,38(15):4149-4156.
    [10] ERIKSSON J,GREEN N,MARSH G,et al. Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water.Environ Sci Technol,2004,38(11):3119-3125.
    [11] KEUM Y S,LIQ X.Reductive debromination of polybrominated diphenyl ethers by zerovalent iron.Environ Sci Technol,2005,39(7):2280-2286.
    [12] LI An,TAI Chao,ZHAO Zongshan,et al.Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles.Environ Sci Technol,2007,41(19):6841-6846.
    [13] HUANG Honglin,ZHANG Shuzhen,CHRISTIE P.Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites.Environ Pollut,2011,159(1):238-243.
    [14] United States Environment Protection Agency (USEPA).Reference guide to non-combustion technologies for remediation of persistent organic pollutants in soil[R/OL].2010[2011-08-20].http://www.clu-in.org/POPs.
    [15] UNEP.Review of emerging, innovative technologies for the destruction and deconta1mination of POPs and the identification of promising technologies for use in developing countries.Nairobi:UNEP,2004.
    [16] JERONIMO M,VERONICA B.Effect of temperature on the release of hexadecane from soil by thermal treatment.J Hazard Mater,2006,143(1/2):455-461.
    [17] JULIANA P,JERONIMO M,ALBERTO F E,et al.Thermal treatment of soils contaminated with gas oil:influence of soil composition and treatment temperature.J Hazard Mater,2002,94(3):273-290.
    [18] 王瑛,李扬,黄启飞,等.污染物浓度与土壤粒径对热脱附修复DDTs污染土壤的影响.环境科学研究,2011,24(9):1016-1022.
    [19] EGIDIJUS E U,WILLIAM A E,HERBERT R P,et al.Complex thermal desorption of PCBs from soil.Chemosphere,1995,30(2):377-387.
    [20] FALCIGLIA P P,GIUSTRA M G,VAGLIASINDI F G A.Low-temperature thermal desorption of diesel polluted soil:influence of temperature and soil texture on conta minant removal kinetics.J Hazard Mater,2010,185(1):392-400.
    [21] LEE W J,SHIH S I,CHANG C Y,et al.Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from conta minated soils.J Hazard Mater,2008,160(1):220-227.
    [22] RISOUL V,RENAULD V,TROUVE G.A laboratory pilot study of thermal deeonta mination of soils polluted by PCBs:comparison with thermogravimetrie analysis.Waste Manage,2000,22(1):61-72.
    [23] 孙磊,蒋新,周健民,等.五氯酚污染土壤的热修复初探.土壤学报,2004,41(3):462-465.
    [24] LIU Wenxin,LI Weibo,HU Jing,et al.Sorption kinetic characteristics of polybro minated diphenyl ethers on natural soils.Environ Pollut,2010,158(9):2815-2820.
    [25] 贾文珍,祝方,剪英红.十溴联苯醚在土壤中吸附行为的研究.环境工程学报,2011,5(3):657-661.
    [26] 薛铮然,李海静.高效溴系阻燃剂十溴联苯醚生产工艺研究.山东化工,2002,31(4):31-32.
    [27] MADER B T,KAI U G,EISENREICH S J.Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces.Environ Sci Technol,1997,31(4):1079-1085.
    [28] HUANG Weilin,SCHLAUTMAN M,WEBER W.A distributed reactivity model for sorption by soils and sediments:5.the influence of near-surface characteristics in mineral domains.Environ Sci Technol,1996,30(10):2993-3000.
    [29] SCHLAUTMAN M A,MORGAN J J.Sorption of perylene on a nonporous inorganic silica surface:effects of aqueous chemistry on sorption rates.Environ Sci Technol,1994,28(12):2184-2190.
    [30] PIGNATELLO J J,XING B S.Mechanisms of slow sorption of organic chemicals to natural particles.Environ Sci Technol,1996,30(1):1-11.
    [31] XING B S,PIGNATELLO J J.Dual-mode sorption of low-polarity compounds in glassy polyvinyl chloride and soil organic matter.Environ Sci Technol,1997,31(3):792-799.
    [32] United States Environment Protection Agency (USEPA).Regional screening level (RSL) resident soil table November 2011[R/OL].2011[2011-10-17].http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables/index.htm.
  • 加载中
计量
  • 文章访问数:  1743
  • HTML全文浏览量:  18
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-22
  • 修回日期:  2012-05-09
  • 刊出日期:  2012-09-25

目录

    /

    返回文章
    返回