留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2×300 MW机组烟塔合一方案大气环境影响分析

马忠强 汪林 朱京海 刘翠玲 杨洪斌

马忠强, 汪林, 朱京海, 刘翠玲, 杨洪斌. 2×300 MW机组烟塔合一方案大气环境影响分析[J]. 环境科学研究, 2012, 25(12): 1416-1421.
引用本文: 马忠强, 汪林, 朱京海, 刘翠玲, 杨洪斌. 2×300 MW机组烟塔合一方案大气环境影响分析[J]. 环境科学研究, 2012, 25(12): 1416-1421.
MA Zhong-qiang, WANG Lin, ZHU Jing-hai, LIU Cui-ling, YANG Hong-bin. Analysis of the Atmospheric Environmental Impact of a Stack-Cooling Tower Project for a 2×300 MW Generating Unit[J]. Research of Environmental Sciences, 2012, 25(12): 1416-1421.
Citation: MA Zhong-qiang, WANG Lin, ZHU Jing-hai, LIU Cui-ling, YANG Hong-bin. Analysis of the Atmospheric Environmental Impact of a Stack-Cooling Tower Project for a 2×300 MW Generating Unit[J]. Research of Environmental Sciences, 2012, 25(12): 1416-1421.

2×300 MW机组烟塔合一方案大气环境影响分析

基金项目: 国家自然科学基金项目(40801228)

Analysis of the Atmospheric Environmental Impact of a Stack-Cooling Tower Project for a 2×300 MW Generating Unit

  • 摘要: 受机场附近160 m限高制约,辽宁某电厂需采用烟塔合一技术. 运用德国AUSTAL2000模型分析了环境风速、大气稳定度、烟气出口速度、烟气出口温度等参数与烟气抬升高度间的关系,预测了烟塔排放的大气环境影响,并且与烟囱方案的大气环境影响进行了对比分析. 结果表明,各类参数变化均会导致烟气抬升高度发生改变. 环境风速不变,稳定度从A变到F时,抬升高度明显变小,最多可降低84.2%;相同稳定度条件下,环境风速从0.1 m/s增至4.4 m/s时,抬升高度明显变小,最多可降低84.3%;烟气出口速度从2.5 m/s增至8.0 m/s,抬升高度显著增加,最多为2.4倍;烟气出口温度从20 ℃增至50 ℃时,烟气抬升高度显著增加,最多为3.3倍. 综合经济及环保因素,该项目烟塔高度取130 m较适宜. 相比210 m烟囱方案,烟塔方案不仅满足机场限空要求,并且污染物年均及日均最大地面浓度均较低.

     

  • [1] Deutsches Institut Fur Nor-mung.Ausbreitungsrechnung bei ableitung von rauchgasen über kühltürme.VDI 3784 Blatt 2.Berlin:Beuth Verlag,1990.
    [2] Deutsches Institut Fur Nor-mung.Ausbreitungsrechnung bei ableitung von rauchgasen über kühltürme.VDI 3945 Blatt 3 Berlin:Beuth Verlag,2000.
    [3] 林勇.烟塔合一技术特点和工程数据.环境科学研究,2005,18(1):35-39.
    [4] 于国续.烟塔合一技术与应用前景研究.吉林电力,2006,34(2):1-4.
    [5] 梁月明.烟塔合一技术的研究与分析.北京:华北电力大学,2007:13-35.
    [6] 隋建才,杜云贵,潘虹,等.烟塔合一技术在华能北京热电厂的应用电站系统工程.电站系统工程,2009,25(2):27-29.
    [7] 韩月荣.烟塔合一技术的环保优势.河北电力技术,2005,24(3):36-39.
    [8] 莫华.燃煤电厂“烟塔合一”技术在环评技术评估中存在的问题与建议.电力环境保护,2008,29(3):56-59.
    [9] 刘志刚,王宝福,王欣刚.冷却塔排烟技术在国内的应用.电力建设,2009,30(3):55-58.
    [10] 李立峰,张树深.“烟塔合一”技术的应用现状及有关问题的探讨.能源环境保护,2010,24(4):48-50.
    [11] 崔克强,李浩.燃煤发电厂烟塔合一环境影响之一.环境科学研究,2005,18(1):27-30.
    [12] 周阳,王红宇,李志强,等.AUSTAL2000应用于国内“烟塔合一”类项目大气影响评价.环境监测管理与技术,2012,24(1):56-61.
    [13] KLEEMAN M J,GLEN R C.Source contributions to the size and composition distribution of urban particulate air pollution.Atmos Environ,1998,32(16):2803-2816.
    [14] GARMIZE LK H,DASHKOV G V,SOLODUKHIN A D,et al.Laboratory modeling of the enhancement of heat and mass transfer processes in chimney-type evaporative cooling towers.Journal of Engineering Physics and Thermo Physics,1994,66(2):126-132.
    [15] TYAGI S K,WANG Shengwei,MA Zhenjun.Prediction, potential and control of plume from wet cooling tower of commercial buildings in Hong Kong:a case study.International Journal of Energy Research,2007,31:778-795.
    [16] RYZNAR E.An observation of cooling tower plume effects on total solar radiation.Atmos Environ,1978,12:1223-1224.
    [17] ANFOSSI D,RICHIARDONE R,BONINO G.An application of a plume rise model for multiple sources to the cooling tower plumes of john E.Amos Power Plant.Ⅱ Nuovo Cimento C,1979,2(4):488-498.
    [18] HINNEBURG D,RENNER E,WOLKE R.Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony.Environ Sci Pollut Res,2009,16(1):12-35.
    [19] 丁峰,李时蓓,邢可佳.烟塔合一项目烟气抬升影响因素分析.环境工程技术学报,2011,1(2):173-180.
    [20] 杨建祥.排烟冷却塔烟气抬升高度的计算分析.电力科技与环保,2010,26(1):23-24.
    [21] STEPHEN D W, MOROZ W J.Wet plume rise from cooling towers in strong winds.Water Air Soil Pollut,1976,6(1):9-24.
    [22] PAPAEFTHIMIOU A V D,ROGDAKIS A E D,KORONAKI A I P.Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower.Applied Thermal Engineering,2012,33/34:199-207.
    [23] XIA Z Z,CHEN C J,WANG R Z.Numerical simulation of a closed wet cooling tower with novel design.International Journal of Heat and Mass Transfer,2011,54:2367-2374.
    [24] LEMOUARI M A,BOUMAZA M B.Experimental investigation of the performance characteristics of a counter flow wet cooling tower.International Journal of Thermal Sciences,2010,49:2049-2056.
    [25] STEERENBERG P A,VAN AMELSVOORT L,LOVIK M,et al.Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities:an exploratory study.Inhalation Toxicology,2006,18:333-346.
    [26] CHRISTENSEN W F,GUNST R F.Estimating pollution source contributions from temporally correlated air quality observations.Communications in Statistics-Simulation and Computation,2004,33(4):1039-1060.
    [27] 祝文杰,张爽.300 MW机组烟塔合一技术应用及经济性分析.湖北电力,2010,34(2):26-32.
    [28] VLASOV A V,DASHKOV G V,SOLODUKHIN A D,et al.Investigation of the internal aerodynamics of the chimney-type evaporative cooling tower.Journal of Engineering Physics and Thermophysics,2002,75(5):1086-1091.
    [29] 洪燕,鲍全盛.烟塔排烟电厂大气影响预测分析.电力科技与环保,2010,26(4):9-11.
    [30] 曾德勇.应用SP模式评估自然通风冷却塔排放脱硫后烟气对大气环境的影响.中国电力,2006,39(2):81-85.
  • 加载中
计量
  • 文章访问数:  2360
  • HTML全文浏览量:  6
  • PDF下载量:  1271
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-09
  • 修回日期:  2012-10-15
  • 刊出日期:  2012-12-25

目录

    /

    返回文章
    返回