留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PRA在焦化厂污染土壤健康风险评价中的应用

姜林 贾晓洋 夏天翔 姚珏君 梁竞 王琪

姜林, 贾晓洋, 夏天翔, 姚珏君, 梁竞, 王琪. PRA在焦化厂污染土壤健康风险评价中的应用[J]. 环境科学研究, 2013, 26(2): 220-226.
引用本文: 姜林, 贾晓洋, 夏天翔, 姚珏君, 梁竞, 王琪. PRA在焦化厂污染土壤健康风险评价中的应用[J]. 环境科学研究, 2013, 26(2): 220-226.
JIANG Lin, JIA Xiao-yang, XIA Tian-xiang, YAO Jue-jun, LIANG Jing, WANG Qi. Research on Application of PRA in Health Risk Assessment of Soil in a Coking Plant Site[J]. Research of Environmental Sciences, 2013, 26(2): 220-226.
Citation: JIANG Lin, JIA Xiao-yang, XIA Tian-xiang, YAO Jue-jun, LIANG Jing, WANG Qi. Research on Application of PRA in Health Risk Assessment of Soil in a Coking Plant Site[J]. Research of Environmental Sciences, 2013, 26(2): 220-226.

PRA在焦化厂污染土壤健康风险评价中的应用

基金项目: 国家环境保护公益性行业科研专项(201009032)

Research on Application of PRA in Health Risk Assessment of Soil in a Coking Plant Site

  • 摘要: 以北京市某炼焦化学厂场地污染调查为依据,采用PRA(概率风险评价)研究了15个人体暴露参数和土壤中污染物浓度不确定性对苯、苯并芘健康风险评价结果的影响. 结果表明:对于表层和深层土壤,苯、苯并芘各暴露途径及总暴露途径PRA95%分位值均小于相应DRA(确定性风险评价)风险值;该场地整个土层中苯的PRA总风险值为1.5×10-8~6.9×10-3,苯并芘为2.3×10-9~2.2×10-3,二者95%分位值分别为3.8×10-4和1.1×10-4;苯、苯并芘的DRA总风险值分别为PRA96.8%和99.1%分位值,并且二者的DRA总风险值/PRA95%分位值分别为1.5和3.2,表明DRA风险值偏保守. 参数敏感性分析表明,对苯总风险不确定性贡献较大的为深层土壤中的苯浓度(贡献率为94.63%,下同)和成人暴露周期(4.12%),苯并芘为表层土壤中苯并芘浓度(92.63%)、成人暴露周期(2.40%)、儿童每日土壤摄入量(2.12%)和儿童暴露周期(1.21%).

     

  • [1] National Research Council.Risk assessment in the federal government:managing the process.Washington DC:National Academy Press,1983.
    [2] 姜林,王岩.场地环境评价指南.北京:中国环境科学出版社,2004.
    [3] 北京市环境保护局.DB 11/T 656—2009场地环境评价导则.北京:北京市质量技术监督局,2010.
    [4] 李志博,骆永明,宋静,等.土壤环境质量指导值与标准研究:Ⅱ.污染土壤的健康风险评价.土壤学报,2006,3(1):142-151.
    [5] 陈梦舫,骆永明,宋静,等.中、英、美污染场地风险评估导则异同与启示.环境监测管理与技术,2011,3(3):14-18.
    [6] US EPA.Risk assessment guidance for superfund(volume Ⅲ):Part a.process for conducting probabilistic risk assessment.Washington DC:US EPA,2001.
    [7] US EPA.Risk assessment guidance for superfund(volume Ⅰ):Part a.human health evaluation manual.Washington DC:US EPA,1989.
    [8] CARACAS.Risk assessment for contaminated sites in europe(volume 1):scientific basis.Nottingham:LQM Press,1998.
    [9] National Research Council.Science and judgment in risk assessment.Washington DC:National Academy Press,1994.
    [10] LEE R C,KISSEL J C.Probabilistic prediction of exposures to arsenic contaminated residential soil.Environmental Geochemistry and Health,1995,7:159-168.
    [11] MORGAN M G,HENRION M,SMALL M.Uncertainty:a guide to dealing with uncertainty in quantitative risk and policy analysis.Cambridge:Cambridge University Press,1990.
    [12] US EPA.Policy for use of probabilistic analysis in risk assessment.Washington DC:US EPA,1997.
    [13] GRIFFIN S,GOODRUM P E,DIAMOND G L,et al.Application of a probabilistic risk assessment methodology to a lead smelter site.Human Ecology Risk Assessment,1999,5(4):845-868.
    [14] PAUSTENBACH D J,MEYER D M,SHEEHAN P J,et al.An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils.Toxicology and Industrial Health,1991,7(3):159-196.
    [15] TAKEDA S,KANNO M,MINASE N,et al.Estimates of parameter and scenario uncertainties in shallow-land disposal of uranium wastes using deterministic and probabilistic safety assessment models.Journal of Nuclear Science and Technology,2002,9(8):929-937.
    [16] WANG Bin,YU Gang,HUANG Jun,et al.Probabilistic ecological risk assessment of OCPs,PCBs,and DLCs in the Haihe River,China.The Scientific World Journal,2010,0:1307-1317.
    [17] DOR F,EMPEREUR-BISSONNET P,ZMIROU D,et al.Validation of multimedia models assessing exposure to PAHs:the SOLEX study.Risk Analysis,2003,3(5):1047-1057.
    [18] BONOMO L,CASERINI S,POZZI C,et al.Target cleanup levels at the site of a former manufactured gas plant in northern Italy:deterministic versus probabilistic results.Environ Sci Technol,2000,4:3843-3848.
    [19] COPELAND T L,PAUSTENBACH D J,HARRIS M A,et al.Comparing the results of a Monte Carlo analysis with EPA''s reasonable maximum exposed individual (RMEI):a case study of a former wood treatment site.Regulatory Toxicology Pharmacology,1993,8(2):275-312.
    [20] 张应华,刘志全,李广贺,等.基于不确定性分析的健康环境风险评价.环境科学,2007,8(7):1409-1415.
    [21] 张大定,曹云者,汪群慧,等.土壤理化性质对污染场地环境风险不确定性的影响.环境科学研究,2012,5(5):526-532.
    [22] 贾晓洋,姜林,夏天翔,等.焦化厂土壤中PAHs的累积、垂向分布特征及来源分析.化工学报,2011,2(12):3525-3531.
    [23] 姜林,钟茂生,夏天翔,等.基于土壤气中实测苯浓度的健康风险评价.环境科学研究,2012,5(6):717-723.
    [24] 环境保护部.污染场地风险评估技术导则(报批稿)[EB/OL].北京:环境保护部,2012[2012-09-19].http://www.crccsr.com/detail.asp?id=64.
    [25] 中国卫生年鉴编委会.中国卫生年鉴2010.北京:人民卫生出版社,2011.
    [26] Oregon Department of Environmental Quality.Guidance for use of probabilistic analysis in human health risk.Portland:DEQ,1998.
    [27] BRUCE E D,ABUSALIH A A,MCDONALD T J,et al.Comparing deterministic and probabilistic risk assessments for sites contaminated by polycyclic aromatic hydrocarbons (PAHs).Journal of Environmental Science and Health Part A,2007,2:697-706.
    [28] 金水高.中国居民营养与健康状况调查报告之十:2002营养与健康状况数据集.北京:人民卫生出版社,2008.
    [29] KIRMAN C,BUDINSKY R A,YOST L,et al.Derivation of soil remediation values for 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) toxicity equivalence (TEQD/F) in soil through deterministic and probabilistic risk assessment of exposure and toxicity.Human and Ecological Risk Assessment:An International Journal,2011,7:125-158.
    [30] 王宗爽,武婷,段小丽,等.环境健康风险评价中我国居民呼吸速率暴露参数研究.环境科学研究,2009,2(10):1171-1175.
    [31] Ministry for the Environment.Draft toxicological intake values for priority contaminants in soil .Wellington:Ministry for the Environment,2011.
    [32] 贾晓洋,姜林,夏天翔,等.RBCA、CLEA及CalTOX模型在苯并芘污染场地健康风险评估中的应用比较.生态毒理学报,2012,7(3):277-284.
    [33] 夏凤英,曹云者,李政一,等.用RBCA和CLEA模型推导土壤中苯并芘的标准值.环境科学研究,2009,2(12):1445-1452.
    [34] KUUSISTO S M,TUHKANER T A.Probabilistic risk assessment of a contaminated site.Geological Survey of Finland,2001,2:99-105.
    [35] SANDER P,OBERG T.Comparing deterministic and probabilistic risk assessments.Journal of Soils and Sendiments,2006,6(1):55-61.
    [36] OBERG T,BERGBACK B.A review of probabilistic risk assessment of contaminated land.Journal of Soils and Sendiments,2005,5(4):213-224.
    [37] CULLEN A C.Measures of compounding conservatism in probabilistic risk assessment.Risk Analysis,1994,4(4):390-393.
    [38] WEIGAND H,TOTSCHE K U,HUWE B,et al.PAH mobility in contaminated industrial soils:a Markov chain approach to the spatial variability of soil properties and PAH levels.Geoderma,2001,2(3/4):371-389.
    [39] 埃文斯,奥尔森.模拟与风险分析.洪锡熙译.上海:上海人民出版社,2001:96-97.
  • 加载中
计量
  • 文章访问数:  1788
  • HTML全文浏览量:  60
  • PDF下载量:  501
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-19
  • 修回日期:  2012-12-13
  • 刊出日期:  2013-02-25

目录

    /

    返回文章
    返回