留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

洱海湖滨带不同基底高程下菰出苗及生长特征

贾永见 储昭升 叶碧碧 尹延震 吴爱平 程 凯

贾永见, 储昭升, 叶碧碧, 尹延震, 吴爱平, 程 凯. 洱海湖滨带不同基底高程下菰出苗及生长特征[J]. 环境科学研究, 2014, 27(1): 12-17.
引用本文: 贾永见, 储昭升, 叶碧碧, 尹延震, 吴爱平, 程 凯. 洱海湖滨带不同基底高程下菰出苗及生长特征[J]. 环境科学研究, 2014, 27(1): 12-17.
JIA Yong-jian, CHU Zhao-sheng, YE Bi-bi, YIN Yan-zheng, WU Ai-ping, CHENG Kai. Emergence and Growth Characteristics of Zizania caducifiora in Different Base Elevations in Erhai Lakeshore[J]. Research of Environmental Sciences, 2014, 27(1): 12-17.
Citation: JIA Yong-jian, CHU Zhao-sheng, YE Bi-bi, YIN Yan-zheng, WU Ai-ping, CHENG Kai. Emergence and Growth Characteristics of Zizania caducifiora in Different Base Elevations in Erhai Lakeshore[J]. Research of Environmental Sciences, 2014, 27(1): 12-17.

洱海湖滨带不同基底高程下菰出苗及生长特征

基金项目: 国家水体污染控制与治理科技重大专项(2008ZX07105-004)

Emergence and Growth Characteristics of Zizania caducifiora in Different Base Elevations in Erhai Lakeshore

  • 摘要: 为研究洱海不同类型湖滨带菰(Zizania caduciflora)的出苗及生长的特征,在2010年3月和6月(菰的主要出苗和生长季节)调查洱海湖湾型和非湖湾型湖滨带不同基底高程上菰生物量、密度、植株叶片数、植株高度等的变化,分析洱海水位变化的影响. 结果表明:随着湖滨带基底高程的降低,洱海湖滨带菰的密度、生物量、单株叶片数呈先增高后快速降低趋势,株高则呈增大后基本不变的趋势;从株密度及生物量看,随着3—6月洱海水位的降低,湖湾型和非湖湾型湖滨带菰生长的最适基底高程都随之下降,3月为1964.85m,6月为1964.55m,所对应的水深均为0.3m. 3月和6月湖湾型湖滨带能够出苗良好的基底高程比非湖湾型分别低了0.3和0.6m;随着水位的下降,湖湾型湖滨带菰出苗良好的范围向水下延伸,但在非湖湾型湖滨带,出苗良好的最低高程几乎不变. 湖湾型和非湖湾型湖滨带菰出苗和生长的差异显示出其影响因素不同,在湖湾型湖滨带,水深动态变化是主要影响因子,而在非湖湾型湖滨带,风浪作用和水深动态变化存在共同作用.

     

  • [1] 刘建康.高级水生生物学.北京:科学出版社,1999.
    [2] 金相灿,刘树坤,章宗涉.中国湖泊环境:Ⅲ.北京:海洋出版社,1995:174-208.
    [3] 郭和蓉,卢小良.水生植物净化水环境与水生植被的修复.长江大学学报:自然科学版,2005,5(2):65-68.
    [4] 叶春,于海婵,宋祥甫.基底条件和栽培方式对芦苇和香蒲生长发育的影响.环境科学研究,2008,1(1):59-63.
    [5] 刘玉,王国祥,潘国权.地下水位深度对芦苇生长与叶绿素荧光参数的影响.南京师大学报:自然科学版,2008,1(3):91-95.
    [6] 王海洋,陈家宽,周进.水位梯度对湿地植物生长、繁殖和生物量分配的影响.植物生态学报,1999,3(3):269-274.
    [7] 王丽,胡金明,宋长春.水位梯度对三江平原典型湿地植物根茎萌发及生长的影响.应用生态学报,2007,8(11):2432-2437.
    [8] EDWARDS A L,LEE D W,RICHARDS J H.Responses to a fluctuating environment:effects of water depth on growth and biomass allocation in Eleocharis cellulosa torr.(Cyperaceae).Canadian Journal of Botany,2003,1(9):964-975.
    [9] DHOTE S,DIXIT S.Water quality improvement through macrophytes:a review.Environmental Monitoring and Assessment,2009,2(1/2/3/4):149-153.
    [10] POTTIER J,BDCARRATS A,MARRS R H.Analysing the spatial heterogeneity of emergent groups to assess ecological restoration.Journal of Applied Ecology,2009,6(6):1248-1257.
    [11] MOORE M,ROMANO S P,COOK T.Synthesis of upper mississippi river system submersed and emergent aquatic vegetation:past,present,and future.Hydrobiologia,2010,0(1):103-114.
    [12] 李萍.大理市洱海特征水位调整分析.人民珠江,2008(2):46-48,5.
    [13] 袁桂香,吴爱平,葛大兵,等.不同水深梯度对4种挺水植物生长繁殖的影响.环境科学学报,2011,1(12):2690-2697.
    [14] WATT S C L,GARCI′A-BERTHOU E,VILAR L.The influence of water level and salinity on plant assemblages of a seasonally flooded Mediterranean wetland.Plant Ecology,2007,9(1):71-85.
    [15] CLEVERING O A,HUNDSCHEID M P J.Plastic and non-plastic variation in growth of newly established clones of Scirpus(bolboschoenus)maritimus L.grown at different water depths.Aquatic Botany,1998,2(1):1-17.
    [16] SORRELL B K, MENDELSSOHN I A,MCKEE K L,et al.Ecophysiology of wetland plant roots:a modelling comparison of aeration in relation to species distribution.Annals of Botany,2000,6(3):675-685.
    [17] DEEGAN B M,WHITE S D,GANF G G.The influence of water level fluctuations on the growth of four emergent macrophyte species.Aquatic Botany,2007,6(4):309-315.
    [18] SHARMA P,ASAEDA T,FUJINO T.Effect of water depth on the rhizome dynamics of Typha angustifolia.Wetlands Ecology and Management,2008,6(1):43-49.
    [19] GRACE J B.Effects of water depth on Typha latifolia and Typha domingensis.American Journal of Botany,1989,6(5):762-768.
    [20] HELENE M,SEGRETAIN B.Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat.Freshwater Biology,2001,6(7):935-945.
    [21] TERRADOS J,GRAU-CASTELLA M,PINOL-SANTINA D,et al.Biomass and primary production of a 8-11m depth meadow versus<3m depth meadows of the seagrass Cymodocea nodosa (Ucria) Ascherson.Aquatic Botany,2006,4(4):324-332.
    [22] VRETARE V,WEISNER S E B,STRAND J A,et al.Phenotypic plasticity in Phragmites australis as a functional response to water depth.Aquatic Botany,2001,9(2/3/4):127-145.
    [23] 胡勇有,胡春明,谢磊,等.植生型生态混凝土孔隙状态对植物生长的影响.华南理工大学学报:自然科学版,2006,4(12):5-9.
    [24] XIAO Keyan,YU Dan,WU Zhonghua.Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria Natans.Hydrobiologia,2007,9(1):265-272.
    [25] VAN GEEST G J,WOLTERS H,ROOZEN F C J M.Water-level fluctuations affect macrophyte richness in floodplain lakes.Hydrobiologia,2005,9(1):239-248.
    [26] SMITH R G B,BROCK M A.The ups and downs of life on the edge:the influence of water level fluctuations on biomass allocation in two contrasting aquatic plants.Plant Ecology,2007,8(1):103-116.
    [27] DATTA S C.Ecology of plant populations.Ⅱ:ecology and management of aquatic vegetation in the Indian subcontinent.Dordrocht and Boston:Kluwer Academic Publishers,1990:105-125.
  • 加载中
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  19
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-01
  • 修回日期:  2013-10-30
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回