留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

若尔盖泥炭地溶解有机碳季节变化特征及其影响因素

娄雪冬 翟生强 康 冰 胡理乐

娄雪冬, 翟生强, 康 冰, 胡理乐. 若尔盖泥炭地溶解有机碳季节变化特征及其影响因素[J]. 环境科学研究, 2014, 27(2): 157-163.
引用本文: 娄雪冬, 翟生强, 康 冰, 胡理乐. 若尔盖泥炭地溶解有机碳季节变化特征及其影响因素[J]. 环境科学研究, 2014, 27(2): 157-163.
LOU Xue-dong, ZHAI Sheng-qiang, KANG Bing, HU Li-le. Seasonal Dynamic Characteristics of Dissolved Organic Carbon in Zoige Peatland and Its Impact Factors[J]. Research of Environmental Sciences, 2014, 27(2): 157-163.
Citation: LOU Xue-dong, ZHAI Sheng-qiang, KANG Bing, HU Li-le. Seasonal Dynamic Characteristics of Dissolved Organic Carbon in Zoige Peatland and Its Impact Factors[J]. Research of Environmental Sciences, 2014, 27(2): 157-163.

若尔盖泥炭地溶解有机碳季节变化特征及其影响因素

基金项目: 国家自然科学基金项目(41103041)

Seasonal Dynamic Characteristics of Dissolved Organic Carbon in Zoige Peatland and Its Impact Factors

  • 摘要: DOC(溶解有机碳)是泥炭地碳循环中最活跃、最敏感的指标. 以若尔盖木里苔草(Carex muliensis)泥炭地为研究对象,分析了2012年该泥炭地DOC季节变化特征及其影响因素,旨在揭示泥炭地碳循环特征及其对全球变化的潜在响应. 结果表明:若尔盖木里苔草泥炭地孔隙水中ρ(DOC)季节变化显著(P<0.001, n=12),总体呈先升后降趋势,8月和5月分别出现最高值(42.77mg/L)和最低值(26.27mg/L). DOC复合物组成结构季节变化明显,主要表现在:在整个生长季节,DOC复合物芳香组分〔A254/ρ(DOC),其中A254为波长254nm处的吸光度,余同〕及有色组分相对含量〔A400/ρ(DOC)〕逐渐增加,变化范围分别为0.02~0.05和0.002~0.007;5—7月DOC复合物腐殖化程度(E4/E6,即A450/A650)迅速降低,8—10月又逐渐增强. 此外,土壤层温度、地表温度及相对湿度是泥炭地孔隙水ρ(DOC)季节变化的主要影响因素,三者的R2分别为0.522、0.486和0.369,降水量则对有色组分含量和腐殖化程度的季节动态有很大贡献(R分别为0.748、-0.604),同时腐殖化程度还受到土壤层和地表温度的影响(R分别为0.744、0.722). 该研究结果有利于从DOC复合物的组成结构方面进一步了解DOC季节特征及其变化的潜在机制.

     

  • [1] GORHAM E.Northern peatlands:role in the carbon cycle and probable responses to climatic warming.Ecological Applications,1991,1(2):182-195.
    [2] BRIDGHAM S D,PASTOR J,DEWEY B,et al.Rapid carbon response of peatlands to climate change.Ecology,2008,9(11):3041-3048.
    [3] 王铭,刘子刚,马学慧,等.中国泥炭地有机碳储量分区.湿地科学,2012,0(2):156-163.
    [4] XIANG Shuang,GUO Ruqing,WU Ning,et al.Current status and future prospects of Zoige Marsh in eastern Qinghai-Tibet Plateau.Ecological Engineering,2009,5(4):553-562.
    [5] EVANS C D,MONTEITH D T,COOPER D M.Long-term increases in surface water dissolved organic carbon:observations,possible causes and environmental impacts.Environ Pollut,2005,7(1):55-71.
    [6] THACKER S A,TIPPING E,BAKER A,et al.Development and application of functional assays for freshwater dissolved organic matter.Water Res,2005,9(18):4559-4573.
    [7] ROULET N,MOORE T R.Environmental chemistry:browning the waters.Nature,2006,4(7117):283-284.
    [8] BELYEA L R,BAIRD A J.Beyond “the limits to peat bog growth”:cross-scale feedback in peatland development.Ecological Monographs,2006,6(3):299-322.
    [9] DISE N B.Peatland response to global change.Science,2009,6(5954):810.
    [10] BILLETT M F,PALMER S M,HOPE D,et al.Linking land-atmosphere-stream carbon fluxes in a lowland peatland system.Global Biogeochemical Cycles,2004,8(1).doi:10.1029/2003GB0 02058.
    [11] FREEMAN C,EVANS C D,MONTEITH D T,et al.Export of organic carbon from peat soils.Nature,2001,2(6849):785.
    [12] WORRALL F,REED M,WARBURTON J,et al.Carbon budget for a British upland peat catchment.Sci Total Environ,2003,2(1):133-146.
    [13] JU Weimin,CHEN Jing M,BLACK T A,et al.Hydrological effects on carbon cycles of Canada's forests and wetlands.Tellus B,2006,8(1):16-30.
    [14] EIMERS M C,WATMOUGH S A,BUTTLE J M.Long-term trends in dissolved organic carbon concentration:a cautionary note.Biogeochemistry,2008,7(1):71-81.
    [15] LAUDON H,TETZLAFF D,SOULSBY C,et al.Change in winter climate will affect dissolved organic carbon and water fluxes in mid-to-high latitude catchments.Hydrological Processes,2013,7:700-709.
    [16] KALBITZ K,SCHWESIG D,SCHMERWITZ J,et al.Changes in properties of soil-derived dissolved organic matter induced by biodegradation.Soil Biology and Biochemistry,2003,5(8):1129-1142.
    [17] SOMMER M.Influence of soil pattern on matter transport in and from terrestrial biogeosystems:a new concept for landscape pedology.Geoderma,2006,3(1):107-123.
    [18] BRIGGS J,LARGE D J,SNAPE C,et al.Influence of climate and hydrology on carbon in an early Miocene peatland.Earth and Planetary Science Letters,2007,3(3):445-454.
    [19] GUO Yuedong,WAN Zhongmei,LIU Deyan.Dynamics of dissolved organic carbon in the mires in the Sanjiang Plain,Northeast China.J Environ Sci,2010,2(1):84-90.
    [20] 张金波,宋长春,杨文燕.小叶章湿地表土水溶性有机碳季节动态变化及影响因素分析.环境科学学报,2005,5(10):1397-1402.
    [21] VAN DEN BERG L J,SHOTBOLT L,ASHMORE M R.Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil,vegetation type and seasonality.Sci Total Environ,2012,7:269-276.
    [22] CHEN Y,SENESI N,SCHNITZER M.Information provided on humic substances by E4/E6ratios.Soil Science Society of America Journal,1977,1(2):352-358.
    [23] GRAYSON R,HOLDEN J.Continuous measurement of spectrophotometric absorbance in peatland stream water in northern England:implications for understanding fluvial carbon fluxes.Hydrological Processes,2012,6(1):27-39.
    [24] WEISHAAR J L,AIKEN G R,BERGAMASCHI B A,et al.Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon.Environ Sci Technol,2003,7(20):4702-4708.
    [25] WALLAGE Z E,HOLDEN J,MCDONALD A T.Drain blocking:an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland.Sci Total Environ,2006,7(2):811-821.
    [26] 王德宣,宋长春,王跃思,等.若尔盖高原泥炭沼泽湿地CO2呼吸通量特征.生态环境,2005,4(6):880-883.
    [27] 陈槐,高永恒,姚守平,等.若尔盖高原湿地甲烷排放的时空异质性.生态学报,2008,8(7):3425-3437.
    [28] 孙广友.论若尔盖高原泥炭赋存规律成矿类型及资源储量.自然资源学报,1992,7(4):334-346.
    [29] 孙广友,罗新正,TUENER R E.青藏东北部若尔盖高原全新世泥炭沉积年代学研究.沉积学报,2001,9(2):177-181.
    [30] 田应兵,熊明彪,熊晓山,等.若尔盖高原湿地土壤-植物系统有机碳的分布与流动.植物生态学报,2003,7(4):490-495.
    [31] 李丽,高俊琴,雷光春,等.若尔盖不同地下水位泥炭湿地土壤有机碳和全氮分布规律.生态学杂志,2011,0(11):2449-2455.
    [32] WILSON L,WILSON J,HOLDEN J,et al.Ditch blocking,water chemistry and organic carbon flux:evidence that blanket bog restoration reduces erosion and fluvial carbon loss.Sci Total Environ,2011,9(11):2010-2018.
    [33] PASTOR J,SOLIN J,BRIDGHAM S D,et al.Global warming and the export of dissolved organic carbon from boreal peatlands.Oikos,2003,0(2):380-386.
    [34] 姜广甲,马荣华,段洪涛.太湖有色溶解有机物对水体总吸收贡献的遥感估算.湖泊科学,2012,4(6):914-922.
    [35] 严晓瑜.不同时间尺度若尔盖湿地植被变化及其与气候的关系.北京:中国气象科学研究院,2008.
    [36] 杨文燕,宋长春,张金波.沼泽湿地孔隙水中溶解有机碳、氮浓度季节动态及与甲烷排放的关系.环境科学学报,2006,6(10):1745-1750.
    [37] 汪太明,王业耀,香宝,等.交替冻融对黑土可溶性有机质荧光特征的影响.光谱学与光谱分析,2011,1(8):2136-2140.
    [38] FRBERG M,BERGGREN D,BERGKVIST B,et al.Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden.Biogeochemistry,2006,7(1):1-23.
    [39] FENNER N,OSTLE N,FREEMAN C,et al.Peatland carbon efflux partitioning reveals that Sphagnum photosynthate contributes to the DOC pool.Plant and Soil,2004,9(1/2):345-354.
    [40] GUELLAND K,HAGEDOM F,SMITTENBERG R H,et al.Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier,Switzerland.Biogeochemistry,2013,3(1/2/3):545-561.
    [41] 何池全.毛果苔草湿地枯落物及其地下生物量动态.应用生态学报,2003,4(3):363-366.
    [42] QUALLS R G,RICHARDSON C J.Factors controlling concentration,export,and decomposition of dissolved organic nutrients in the Everglades of Florida.Biogeochemistry,2003,2(2):197-229.
    [43] STRAKOV P,PENTTIL T,LAINE J,et al.Disentangling direct and indirect effects of water table drawdown on above-and belowground plant litter decomposition:consequences for accumulation of organic matter in boreal peatlands.Global Change Biology,2012,8(1):322-335.
    [44] 万鹏,王庆安,李昭阳,等.根据土壤蓄水能力探讨若尔盖重要生态服务功能区的水源涵养功能.四川环境,2011,0(5):121-123.
  • 加载中
计量
  • 文章访问数:  1616
  • HTML全文浏览量:  22
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2013-10-12
  • 刊出日期:  2014-02-25

目录

    /

    返回文章
    返回