留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe掺杂TiO2催化剂制备及其光催化脱汞机理

代学伟 吴 江 齐雪梅 吴 强 何 平 李 忺

代学伟, 吴 江, 齐雪梅, 吴 强, 何 平, 李 忺. Fe掺杂TiO2催化剂制备及其光催化脱汞机理[J]. 环境科学研究, 2014, 27(8): 827-834.
引用本文: 代学伟, 吴 江, 齐雪梅, 吴 强, 何 平, 李 忺. Fe掺杂TiO2催化剂制备及其光催化脱汞机理[J]. 环境科学研究, 2014, 27(8): 827-834.
DAI Xue-wei, WU Jiang, QI Xue-mei, WU Qiang, HE Ping, LI Xian. Preparation of Fe-Doped Titania by Sol-Gel Method and Photocatalytic Removal of Gaseous Mercury[J]. Research of Environmental Sciences, 2014, 27(8): 827-834.
Citation: DAI Xue-wei, WU Jiang, QI Xue-mei, WU Qiang, HE Ping, LI Xian. Preparation of Fe-Doped Titania by Sol-Gel Method and Photocatalytic Removal of Gaseous Mercury[J]. Research of Environmental Sciences, 2014, 27(8): 827-834.

Fe掺杂TiO2催化剂制备及其光催化脱汞机理

基金项目: 国家自然科学基金项目(50806041);上海市科学技术委员会科技创新行动计划项目(11dz1203402)

Preparation of Fe-Doped Titania by Sol-Gel Method and Photocatalytic Removal of Gaseous Mercury

  • 摘要: 采用溶胶-凝胶法制备Fe-TiO2(Fe掺杂纳米二氧化钛)催化剂,通过XRD(X射线衍射仪)、SEM(扫描电镜)、EDX(能量色散X射线光谱仪)和UV-Vis谱对其形态、结构、组成和性质进行表征. 采用Fe-TiO2催化剂脱除气态Hg0(元素汞),研究了该催化剂在紫外光和可见光下的脱汞效果,并考察了Fe3+的最佳掺杂比. 结果表明:在Fe-TiO2光催化剂中,TiO2以锐钛矿相形态存在,当Fe3+掺杂浓度〔以n(Fe)/n(Ti)计〕达到0.010时,所制备的Fe-TiO2在紫外光和可见光下的脱汞率均达到最大,分别为54.76%和18.92%. 提出了Fe-TiO2光催化脱汞的可能机制:Fe3+掺入TiO2结构中,使TiO2的导带与Fe3+的d轨道发生重叠,导致TiO2能带变窄,从而扩展了可见光的响应范围;Fe3+在TiO2中作为一个浅俘获阱,当其俘获光生电子以后,光生空穴能够继续扩散到TiO2表面发生表面化学反应,生成具有强氧化性的超氧自由基O2-和·OH,对Hg0进行氧化;当Fe3+掺杂浓度大于0.010时,由于过多的Fe3+成为了光生电子和光生空穴的俘获位,从而使俘获的电子-空穴对通过量子隧道效应复合的概率增加,同时,活性氧化物种O2-和·OH相互消耗,抑制了光催化效率.

     

  • [1] 孟素丽,段钰锋,黄治军,等.烟气成分对燃煤飞灰汞吸附的影响.中国电机工程学报,2009,9(20):66-73.MENG Suli,DUAN Yufeng,HUANG Zhijun,et al.Effect of flue gas components on mercury adsorption by coal-fired fly ash.Proceedings of the CSEE,2009,9(20):66-73.
    [2] PAVLISH J H,SONDREAL E A,MANN M D,et al.Status review of mercury control options for coal-fired power plants.Fuel Processing Technology,2003,2(2/3):89-165.
    [3] 韩斌杰,岳涛,王凡,等.复合钙基吸附剂吸附烟气中汞的试验研究.环境科学研究,2013,6(9):929-934.HAN Binjie,YUE Tao,WANG Fan,et al.Experimental study on mercury absorbed from flue gas with Ca-based composite sorbent.Research of Environmental Sciences,2013,6(9):929-934.
    [4] WU Ye,WANG Shuxiao,STREETS D G,et al.Trends in anthropogenic mercury emissions in China from 1995 to 2003.Environ Sci Technol,2006,0(17):5312-5318.
    [5] WANG S X,ZHANG L,LI G H,et al.Mercury emission and speciation of coal-fired power plants in China.Atmos Chem Phys,2010,0(3):1183-1192.
    [6] 支国瑞,薛志钢,李洋,等.基于国内实测燃煤电厂烟气汞排放估算的不确定度.环境科学研究,2013,6(8):814-821.ZHI Guorui,XUE Zhigang,LI Yang,et al.Uncertainty of flue gas mercury emission from coal-fired power plants in China based on field measurements.Research of Environmental Sciences,2013,6(8):814-821.
    [7] 张凡,王凡,刘宇,等.干法烟气脱硫副产物中汞的形态分布.环境科学研究,2011,4(1):73-78.ZHANG Fan,WANG Fan,LIU Yu,et al.Mercury speciation distribution in dry flue gas desulfurization byproduct.Research of Environmental Sciences,2011,4(1):73-78.
    [8] WANG Kuohua,JEHNG Jihmirn,HSIEH Yunghsu,et al.The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phases.J Hazard Mater,2002,0(1):63-75.
    [9] HOFFMANN M R,MARTIN S T,CHOI W.Environmental applications of semiconductor photocatalysis.Chem Rev,1995,5(1):69-96.
    [10] CARP O,HUISMAN C L,RELLER A.Photoinduced reactivity of titanium dioxide.Progress in Solid State Chemistry,2004,2(1/2):33-177.
    [11] LI Ying,MURPHY P,WU Changyu.Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite.Fuel Proceeding Technology,2008,9(6):567-573.
    [12] LI Hailong,WU Changyu,LI Ying,et al.Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.J Hazard Mater,2012,3:117-123.
    [13] MARUGAN J,CHRISTENSEN P,EGERTON T,et al.Synthesis,characterization and activity of photocatalytic sol-gel TiO2 powders and electrodes.Applied Catalysis B:Environmental,2009,9(1/2):273-283.
    [14] LIU Yue,WANG Yuejun,WANG Haiqiang,et al.Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method.Catalysis Communications,2011,2(14):1291-1294.
    [15] 袁媛,张军营,赵永椿,等.TiO2-Ag2O复合纳米纤维烟气脱汞实验研究.华中科技大学学报:自然科学版,2012,0(6):99-103.YUAN Yuan,ZHANG Junying,ZHAO Yongchun,et al.Removing elemental mercury by TiO2-Ag2O nanofiber.Journal of Huazhong University of Science and Technology,2012,0(6):99-103.
    [16] 袁媛,张军营,樊国祥,等.静电纺丝法制备TiO2-WO3纳米纤维及光催化脱汞的研究.中国电机工程学报,2012,2(32):44-49.YUAN Yuan,ZHANG Junying,FAN Guoxiang,et al.Electrospun TiO2-WO3 nanofibers for photocatalytic removal of mercury.Proceeding of the CSEE,2012,2(32):44-49.
    [17] YU Jiaguo,XIANG Quanjun,ZHOU Minghua.Preparation,characterization and visible-light driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures.Applied Catalysis B:Environmental,2009,0(3/4):595-602.
    [18] AMBRUS Z,BALAZS N,ALAPI T,et al.Synthesis,structure and photocatalytic properties of Fe(Ⅲ)-doped TiO2 prepared from TiCl3.Applied Catalysis B:Environmental,2008,1(1/2):27-37.
    [19] ELGHNIJI K,ATYAOUI A,LIVRAGHI S,et al.Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination.Journal of Alloys and Compounds,2012,1:421-427.
    [20] ZHANG Yanhui,TANG Zirong,FU Xianzhi,et al.TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:is TiO2-graphene truly different from other TiO2-carbon composite materials?.ACS Nano,2010,4(12):7307-7314.
    [21] YUAN Yuan,ZHANG Junying,LI Hailong,et al.Simultaneous removal of SO2,NO and mercury using TiO2-aluminum silicate fiber by photocatalysis.Chemical Engineering Journal,2012,2:21-28.
    [22] SJOSTROM S,DURHAM M, BUSTARD C J,et al.Activated carbon injection for mercury control:overview.Fuel,2010,9(6):1320-1322.
    [23] ANPO M.Preparation,characterization,and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation:approaches in realizing high efficiency in the use of visible light.Bull Chem Soc Jpn,2004,7:1427-1442.
    [24] JIANG Yong,ZHANG Ping,LIU Zuwu,et al.The preparation of porous nano-TiO2 with high activity and the discussion of the cooperation photocatalysis mechanism.Materials Chemistry and Physics,2006,9(2/3):498-504.
    [25] WANG Z H,JIANG S D,ZHU Y Q,et al.Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment.Fuel Processing Technology,2010,1(11):1395-1400.
    [26] LOW W,BOONAMNUAYVITAYA V.Enhancing the photocatalytic activity of TiO2 co-doping of graphene-Fe3+ ions for formaldehyde removal.J Environ Manage,2013,7:142-149.
    [27] PANG Yeanling,ABDULLAH A Z.Effect of low Fe3+ doping on characteristics,sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water.J Hazard Mater,2012,5/236:326-335.
    [28] TIENG S,KANAEV A,CHHOR K.New homogeneously doped Fe(Ⅲ)-TiO2 photo catalyst for gaseous pollutant degradation.Applied Catalysis A:General,2011,9:191-197.
    [29] WANG Bing,LI Qin,WANG Wei,et al.Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application.Applied Surface Science,2011,7(8):3473-3479.
    [30] ZHANG Fuman,LI Caiting,ZENG Guangming,et al.Experimental study on oxidation of elemental mercury by UV/Fenton system.Chemical Engineering Journal,2013,2:81-88.
    [31] CHOI Wonyong,TERMIN A,HOFFMANN M R.The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics.J Phys Chem,1994,8(15):13669-13679.
    [32] TRIGGS P.Electronic and structural properties of single crystals in the system TiO2-RuO2.Helvetica Physica Acta,1985,8(4):657-660.
  • 加载中
计量
  • 文章访问数:  3071
  • HTML全文浏览量:  9
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-08
  • 修回日期:  2014-05-18
  • 刊出日期:  2014-08-25

目录

    /

    返回文章
    返回