留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效纤维滤料过滤纳米颗粒物时的反弹效应

庄子威 张振中 江 锋

庄子威, 张振中, 江 锋. 高效纤维滤料过滤纳米颗粒物时的反弹效应[J]. 环境科学研究, 2014, 27(8): 835-841.
引用本文: 庄子威, 张振中, 江 锋. 高效纤维滤料过滤纳米颗粒物时的反弹效应[J]. 环境科学研究, 2014, 27(8): 835-841.
ZHUANG Zi-wei, ZHANG Zhen-zhong, JIANG Feng. Experimental Research on the Bounce Effect of Nanoparticles during Filtration by HEPA Filter Media[J]. Research of Environmental Sciences, 2014, 27(8): 835-841.
Citation: ZHUANG Zi-wei, ZHANG Zhen-zhong, JIANG Feng. Experimental Research on the Bounce Effect of Nanoparticles during Filtration by HEPA Filter Media[J]. Research of Environmental Sciences, 2014, 27(8): 835-841.

高效纤维滤料过滤纳米颗粒物时的反弹效应

基金项目: 国家自然科学基金项目(50978154)

Experimental Research on the Bounce Effect of Nanoparticles during Filtration by HEPA Filter Media

  • 摘要: 经典过滤理论未考虑纳米颗粒物在纤维表面反弹并降低过滤效率的可能性. 选择不同等级的HEPA(高效空气过滤)玻璃纤维滤料,使用SMPS(扫描电迁移率粒度分析仪)测量粒径在10~500 nm内3种颗粒物——直角立方体MgO、圆角立方体NaCl和球形PSL(聚苯乙烯)固体颗粒的过滤效率,通过比较不同滤料状态下过滤效率的差别分析反弹效应的影响. 结果表明:①硅油熏蒸法制备的湿态滤料可以模拟过滤的理想状态. ②过滤时颗粒物反弹效应大小与其自然运动规律有关,NaCl颗粒的反弹率约为MgO颗粒的66.7%,PSL颗粒的反弹率比非球形颗粒小一个数量级左右. ③颗粒物反弹率也受到滤速的影响,在1.0~5.3 cm/s滤速范围内,反弹率与滤速成正比;滤速在5.3 cm/s时颗粒物的最大反弹率在0.363%~2.667%之间,不同颗粒物的最大反弹率不同,但最大反弹粒径相差不大. ④可以将干态滤料在5.3 cm/s滤速下对MgO颗粒的过滤作为HEPA滤料反弹效应试验的计算基准,根据形状参数(S)和过滤介质透过率的动力学模型对其他滤速和形状的颗粒物反弹率进行修定. ⑤反弹效应对透过率的影响较大,在MPPS(最易透过粒径)附近,非球形颗粒反弹效应对实际透过率的贡献可达30%~40%. 研究表明,HEPA过滤需要考虑颗粒物反弹效应对过滤效率的影响.

     

  • [1] 许钟麟.空气洁净技术原理.3版.北京:科学出版社,2003:85-87.
    [2] 朱天乐.室内空气污染控制.北京:化学工业出版社,2003:116.
    [3] CHENG Y S,YEH H C.Particle bounce in cascade impactors.Environ Sci Technol,1979,3(11):1392-1396.
    [4] WALL S,JOHN W,WANG H C,et al.Measurements of kinetic energy loss for particles impacting surfaces.Aerosol Science and Technology,1990,2(4):926-946.
    [5] DAHNEKE B.The capture of aerosol particles by surfaces.Journal of Colloid and Interface Science,1971,7(2):342-353.
    [6] HINDS W C.Aerosol technology:properties,behavior,and measurement of airborne particles.New York:John Wiley & Sons,1999:146-147.
    [7] BOSKOVIC L,ALTMAN I S,AGRANOVSKI I E,et al.Influence of particle shape on filtration process.Aerosol Science and Technology,2005,9(12):1184-1190.
    [8] BOSKOVIC L,AGRANOVSKI I E,BRADDOCK R D.Filtration of nanosized particles with different shape on oil coated fibres.Journal of Aerosol Science,2007,8(12):1220-1229.
    [9] BOSKOVIC L,AGRANOVSKI I E,ALTMAN I S,et al.Filter efficiency as a function of nanoparticle velocity and shape.Journal of Aerosol Science,2008,9(7):635-644.
    [10] OTANI Y,EMI H,CHO S J,et al.Generation of nanometer size particles and their removal from air.Advanced Powder Technology,1995,6(4):271-281.
    [11] ICHITSUBO H,HASHIMOTO T,ALONSO M,et al.Penetration of ultrafine particles and ion clusters through wire screen.Aerosol Science and Technology,1996,4(3):119-127.
    [12] SKAPTSOV A S,BAKLANOV A M,DUBTSOV S N,et al.An experimental study of the thermal rebound effect of nanometer aerosol particles.Journal of Aerosol Science,1996,7(S1):145-146.
    [13] BALAZY A,PODGORSKI A,GRANDON L.Filtration of nanosized aerosol particles in fibrous filters:Ⅰ.experimental results.Budapest:[s.n.],2004:S967-S968.
    [14] KIM C S,BAO L,OKUYAMA K,et al.Filtration efficiency of a fibrous filter for nanoparticles.Journal of Nanoparticle Research,2006,8(2):215-221.
    [15] STEFFENS J,COURY J R.Collection efficiency of fiber filters operating on the removal of nano-sized aerosol particles:Ⅰ.homogeneous fibers.Separation and Purification Technology,2007,8(1):99-105.
    [16] GULIJK C,BAL E,SCHMIDT-OTT A.Experimental evidence of reduced sticking of nanoparticles on a metal grid.Journal of Aerosol Science,2009,0(4):362-369.
    [17] ALONSO M,KOUSAKA Y,HASHIMOTO T,et al.Penetration of nanometer-sized aerosol particle through wire screen and laminar flow tube.Aerosol Science and Technology,1997,7(4):471-480.
    [18] HEIM M,MULLINS B J,WILD M,et al.Filtration efficiency of aerosol particles below 20 nanometers.Aerosol Science and Technology,2005,9(8):782-789.
    [19] HEIM M,MULLINS B J,KASPER G.Comment on penetration of ultrafine particles and ion clusters through wire screens by Ichitsubo et al.Aerosol Science and Technology,2006,0(2):144-145.
    [20] 吴艳敏,王旭辉,刘龙波.纤维滤材对纳米气溶胶粒子收集效率的研究.中国粉体技术,2007(5):35-37.WU Yanmin,WANG Xuhui,LIU Longbo.Exploration of collection efficiency for fibrous filters to nanometer aerosol particles.China Powder Science and Technology,2007(5):35-37.
    [21] KIM S C,HARRINGTON M S,PUI D Y H.Experimental study of nanoparticles penetration through commercial filter media.Journal of Nanoparticle Research,2007,9(1):117-125.
    [22] JAPUNTICH D A,FRANKLIN M L,PUI Y H,et al.A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers.Journal of Nanoparticle Research,2007,9(1):93-107.
    [23] HUANG Shenghsiu,CHEN Chunwan,CHANG Chengping,et al.Penetration of 4.5 nm to 10 μm aerosol particles through fibrous filters.Journal of Aerosol Science,2007,8(7):719-727.
    [24] WANG J,CHEN D R,PUI D Y H.Modeling of filtration efficiency of nanoparticles in standard filter media.Journal of Nanoparticle Research,2007,9(1):109-115.
    [25] SHIN W G,MULHOLLAND G W,KIM S C,et al.Experimental study of filtration efficiency of nanoparticles below 20 nm at elevated temperatures.Journal of Aerosol Science,2008,9(6):488-499.
    [26] MOURET G,CHAZELET S,THOMAS D,et al.Discussion about the thermal rebound of nanoparticles.Separation and Purification Technology,2011,8(2):125-131.
    [27] WANG C S,OTANI Y.Removal of nanoparticles from gas streams by fibrous filters:a review.Ind Eng Chem Res,2013,2(1):5-17.
    [28] MULLINS B J,AGRANOVSKI I E,BRADDOCK R D.Particle bounce during filtration of particles on wet and dry filters.Aerosol Science and Technology,2003,7(7):587-600.
    [29] ALTMAN I S,AGRANOVSKI I E,CHOI M.On nanoparticle surface growth:MgO nanoparticle formation during a Mg particle combustion.Applied Physics Letters,2004,4(25):5130-5132.
    [30] INTRA P,TIPPAYAWONG N.An overview of differential mobility analyzers for size classification of nanometer-sized aerosol particles.Songklanakari Journal of Science and Technology,2008,0(2):243-256.
    [31] 王宗爽,付晓,王占山,等.大气颗粒物吸湿性研究.环境科学研究,2013,6(4):341-349.WANG Zongshuang,FU Xiao,WANG Zhanshan,et al.Research progress of the hygroscopicity of atmospheric particles.Research of Environmental Sciences,2013,6(4):341-349.
  • 加载中
计量
  • 文章访问数:  2478
  • HTML全文浏览量:  10
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-02
  • 修回日期:  2014-02-15
  • 刊出日期:  2014-08-25

目录

    /

    返回文章
    返回