留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温域湿地植物根际硝化强度及氨氧化微生物研究

黄 娟 杨思思 李润青 傅大放

黄 娟, 杨思思, 李润青, 傅大放. 低温域湿地植物根际硝化强度及氨氧化微生物研究[J]. 环境科学研究, 2014, 27(8): 857-864.
引用本文: 黄 娟, 杨思思, 李润青, 傅大放. 低温域湿地植物根际硝化强度及氨氧化微生物研究[J]. 环境科学研究, 2014, 27(8): 857-864.
HUANG Juan, YANG Si-si, LI Run-qing, FU Da-fang. Nitrification Intensity and Ammonia-Oxidizing Microorganisms in Wetland Plant Rhizosphere Soil at Low Temperature[J]. Research of Environmental Sciences, 2014, 27(8): 857-864.
Citation: HUANG Juan, YANG Si-si, LI Run-qing, FU Da-fang. Nitrification Intensity and Ammonia-Oxidizing Microorganisms in Wetland Plant Rhizosphere Soil at Low Temperature[J]. Research of Environmental Sciences, 2014, 27(8): 857-864.

低温域湿地植物根际硝化强度及氨氧化微生物研究

基金项目: 国家自然科学基金项目(50909019,51079029);江苏省优势学科发展基金项目(PAPD)

Nitrification Intensity and Ammonia-Oxidizing Microorganisms in Wetland Plant Rhizosphere Soil at Low Temperature

  • 摘要: 以低温域(0~15 ℃)下黄菖蒲(Iris pseudacorus)、菖蒲(Acorus calamus)和香蒲(Typha orientalis)3种湿地植物为研究对象,分别取其根际土壤测定硝化强度,并采用FISH(荧光原位杂交)技术,考察植物根际AOB(氨氧化细菌)、AOA(氨氧化古菌)的数量变化规律. 结果表明:低温条件下,香蒲根际土壤的硝化强度最高,平均值为1.40 mg/(kg·h),黄菖蒲和菖蒲的平均值均为0.96 mg/(kg·h). 湿地植物根际土壤中的细菌数量(数量级为1010)远高于古菌(数量级为108),其中AOB为优势菌种,3种湿地植物的AOA数量分别约占总古菌数量的46.0%、47.9%和49.7%. 3种湿地植物根际AOB的数量(以湿土计,下同)排序为香蒲(2.57×109 g-1)>黄菖蒲(1.23×109 g-1)≈菖蒲(1.14×109 g-1),AOA的数量(以湿土计)排序为黄菖蒲(2.78×108 g-1)>香蒲(2.57×108 g-1)>菖蒲(1.15×108 g-1). 微生物分布特性和硝化作用效果均表明,不同植物根际氨氧化过程的主要作用微生物具有一定差异,AOA和AOB对于湿地土壤氮转化均具有不可忽视的作用,并与植物本体、土壤硝化过程微环境之间有一定的耦合关系.

     

  • [1] ZHANG Yushan,WANG Jing,QIU Jinquan.Effectiveness of a subsurface constructed wetland on the treatment of saline wastewater.Journal of Environmental Science and Engineering,2010,4(1):9-13.
    [2] GIKAS G D,TSIHRINTZIS V A.A small-size vertical flow constructed wetland for on-site treatment of household wastewater.Ecological Engineering,2012,4:337-343.
    [3] ONG S A,UCHIYAMA K,INADAMA D,et al.Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants.Bioresource Technology,2010,1(19):7239-7244.
    [4] BRIX H.Function of macrophytes in constructed wetland.Water Sci Technol,1994,9(4):71-78.
    [5] ZENG Fanrong,CHEN Song,MIAO Ying,et al.Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress.Environ Pollut,2008,5(2):284-289.
    [6] 李稹,黄娟,姜磊,等.人工湿地植物根系分泌物与根际微环境相关性的研究进展.安全与环境学报,2012,2(5):41-45.LI Zhen,HUANG Juan,JIANG Lei,et al.Factors affecting the dye sewage decolorization by fungi in open-air conditions.Journal of Safety and Environment,2012,2(5):41-45.
    [7] SHELEF O,GROSS A,RACHMILEVITCH S.The use of Bassia indica for salt phytoremediation in constructed wetlands.Water Res,2012,6(13):3967-3976.
    [8] 卢少勇,金相灿,余刚.人工湿地的氮去除机理.生态学报,2006,6(8):2670-2677.LU Shaoyong,JIN Xiangcan,YU Gang.Nitrogen removal mechanism of constructed wetland.Acta Ecologica Sinica,2006,6(8):2670-2677.
    [9] 岳冬梅,田梦,宋炜,等.太湖沉积物中氮循环菌的微生态.微生物学通报,2011,8(4):555-560.YUE Dongmei,TIAN Meng,SONG Wei,et al.Research on the micro-ecology of nitrogen cycling bacteria in sediments of Lake Taihu.Microbiology,2011,8(4):555-560.
    [10] 贾仲君,翁佳华,林先贵,等.氨氧化古菌的生态学研究进展.微生物学报,2010,0(4):431-436.JIA Zhongjun,WENG Jiahua,LIN Xiangui,et al.Microbial ecology of archaeal ammonia oxidation:a review.Acta Microbiologica Sinica,2010,0(4):431-436.
    [11] OVED T,SHAVIV A,GOLDRATH T,et al.Inflence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil.Appl Environ Microbiol,2001,7(8):3426-3433.
    [12] 付融冰,杨海真,顾国维,等.人工湿地基质微生物状况与净化效果相关分析.环境科学研究,2005,8(6):44-49.FU Rongbing,YANG Haizhen,GU Guowei,et al.Analysis of substrate microorganisms status in constructed wetlands and their correlation with pollutants removal for wastewater treatment.Research of Environmental Sciences,2005,8(6):44-49.
    [13] PHILLIPS C J,SMITH Z,EMBLEY T M,et al.Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in the northwestern Mediterranean Sea.Appl Environ Microbiol,1999,5(2):779-786.
    [14] WUCHTER C,ABBAS B,COOLEN M J L,et al.Archaeal nitrification in the ocean.Proceedings of the National Academy of Sciences,2006,3(33):12317-12322.
    [15] CBRON A,BERTHE T,GARNIER J.Nitrification and nitrifying bacteria in the lower Seine River and estuary (France).Appl Environ Microbiol,2003,9(12):7091-7100.
    [16] CAFFREY J M,BANO N,KALANETRA K,et al.Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia.The ISME Journal,2007,1(7):660-662.
    [17] 叶磊,祝贵兵,王雨,等.白洋淀湖滨湿地岸边带氨氧化古菌与氨氧化细菌的分布特性.生态学报,2011,1(8):2209-2215.YE Lei,ZHU Guibing,WANG Yu,et al.Abundance and biodiversity of ammonia-oxidizing archaea and bacteria in littoral wetland of Baiyangdian Lake,North China.Acta Ecologica Sinica,2011,1(8):2209-2215.
    [18] 惠丽华.辉腾锡勒草原区天然湖泊干涸对氨氧化微生物群落结构的影响.呼和浩特:内蒙古大学,2012.HUI Lihua.Effects of the dry-up natural lake on community structure of ammonia-oxidizing prokaryotes in Huitengxile grassland.Huhehaote:Inner Monglia University,2012.
    [19] 董晓.辽河口湿地氨氧化菌群群落特征及影响因素的研究.青岛:中国海洋大学,2011.DONG Xiao.The spatial temporal change of nitrification and denitrification in Liaohe estuary sediments and influencing factors of nitrogen removal.Qingdao:Ocean University of China,2011.
    [20] DI H J,CAMERON K C,SHEN J P,et al.A lysimeter study of nitrate leaching from grazed grassland as affected by a nitrification inhibitor,dicyandiamide,and relationships with ammonia oxidizing bacteria and archaea.Soil Use and Management,2009,5(4):454-461.
    [21] LAVERMAN A M,SPEKSNIJDER A G C,BRASTER M,et al.Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil.Microbial Ecology,2001,2(1):35-45.
    [22] WANG Yanan,KE Xiubin,WU Liqin,et al.Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization.Systematic and Applied Microbiology,2009,2(1):27-36.
    [23] KOWALCHUK G A,STEPHEN J R.Ammonia-oxidizing bacteria:a model for molecular microbial ecology.Annual Review of Microbiology,2001,5:485-529.
    [24] VENTER J C,REMINGTON K,HEIDELBERG J F,et al.Environmental genome shotgun sequencing of the Sargasso Sea.Science,2004,4(5667):66-74.
    [25] KNNEKE M,BERNHARD A E,TORRE J R,et al.Isolation of an autotrophic ammonia-oxidizing marine archaeon.Nature,2005,7:543-546.
    [26] TREUSCH A H,LEINIGER S,KLETZLN A,et al.Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling.Environmental Microbiology,2005,7(12):1985-1995.
    [27] WERKER A G,DOUGHERTY J M,MEHENRY J L.Treatment variability for wetland wastewater treatment design in cold climates.Ecological Engineering,2002,9(1):1-11.
    [28] 申欢,胡洪营,潘永宝.潜流式人工湿地冬季运行的强化措施研究.中国给水排水,2007,3(5):44-46.SHEN Huan,HU Hongying,PAN Yongbao.Study on enhanced measures for operation of subsurface flow constructed wetlands in winter.China Water & Wastewater,2007,3(5):44-46.
    [29] NIVALA J,HOOS M B,CROSS C,et al.Treatment of landfill leachate using an aerated,horizontal subsurface-flow constructed wetland.Sci Total Environ,2007,0(1/2/3):19-27.
    [30] LU Shaoyong,ZHANG Pengyi,JIN Xiangcan,et al.Nitrogen removal from agricultural runoff by full-scale constructed wetland in China.Hydrobiologia,2009,1(1):115-126.
    [31] 叶捷,彭剑峰,高红杰,等.低温下潮汐流人工湿地系统对污水净化效果.环境科学研究,2011,4(3):294-300.YE Jie,PENG Jianfeng,GAO Hongjie,et al.Wastewater purification efficiency by tidal-flow constructed wetland system in low temperature seasons.Research of Environmental Sciences,2011,4(3):294-300.
    [32] 鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    [33] 王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究.环境科学学报,2006,6(2):266-270.WANG Xiaojuan,ZHANG Rongshe.Study on intensity of microorganism nitrification and denitrification in contructed wetlands.Acta Scientiae Circumstantiae,2006,6(2):266-270.
    [34] 李良漠,潘映华,周秀如,等.太湖地区主要类型土壤的硝化作用及其影响因素.土壤,1987(6):289-293.
    [35] 王芳,DRFLER U,SCHMID M,等.1,2,4-三氯苯矿化菌的鉴定与功能分析.环境科学,2007,8(5):1082-1087.WANG Fang,DRFLER U,SCHMID M,et al.Identification of 1,2,4-trichlorobenzene-mineralizing bacteria and their function analysis.Environmental Science,2007,8(5):1082-1087.
    [36] 朱琳,尹立红,浦跃朴,等.荧光原位杂交法检测环境硝化细菌试验条件优化及应用.东南大学学报,2005,5(2):266-270.ZHU Lin,YIN Lihong,PU Yuepu,et al.Optimization and application of fluorescence in situ hybridization assay for detecting nitrifying bacter ia in environmental samples.Journal of Southeast University,2005,5(2):266-270.
    [37] 杨小丽,周娜,傅大放,等.FISH技术解析不同氨氮浓度MBR中的微生物群落结构.东南大学学报,2013,3(2):1-6.YANG Xiaoli,ZHOU Na,FU Dafang,et al.Analysis of microbial community structure in MBR with different ammonia concentrations using fluorescence in situ hybridization.Journal of Southeast University,2013,3(2):1-6.
    [38] 全向春,王育来,何孟常,等.FISH方法解析大辽河入海口沉积物中微生物的垂直分布特征.环境科学学报,2009,9(7):1502-1509.QUAN Xiangchun,WANG Yulai,HE Mengchang,et al.Characterization of microbial vertical distribution in sediment from the estuary of the Daliao River by the FISH method.Acta Scientiae Circumstantiae,2009,9(7):1502-1509.
    [39] PERNTHALER A,PERNTHALER J,AMAMN R.Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria.Appl Environ Microbiol,2002,8(6):3094-3101.
    [40] PICHON D,GAIA V,D.NORMAN M D,et al.Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids(Cephalopoda:Loliginidae and Idiosepiidae).Marine Biology,2005,7(6):1323-1332.
    [41] SCHRAMM A,BEER D D,GIESEKE A,et al.Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm.Environmental Microbiology,2000,2(6):680-686.
    [42] AMANN R,FUCHS B M.Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.Nature Reviews Microbiology,2008,6(5):339-348.
    [43] TEIRA E,REINTHALER T,PERNTHALER A,et al.Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean.Appl Environ Mircobiol,2004,0(7):4411-4414.
    [44] HUETT D O,MORRISB S G,SMITHA,et al.Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.Water Res,2005,9(14):3259-3272.
    [45] 雒维国,王世和,黄娟,等.潜流型人工湿地低温域脱氮效果研究.中国给水排水,2005,1(8):37-40.LUO Weiguo,WANG Shihe,HUANG Juan,et al.Denitrification by using subsurface constructed wetland in low temperature.China Water & Wastewater,2005,1(8):37-40.
    [46] 黄娟,李稹,张健,等.低温域湿地植物根际氮转化强度.东南大学学报,2011,1(6):1231-1235.HUANG Juan,LI Zhen,ZHANG Jian,et al.Nitrogen transformation intensity in wetland plant rhizosphere area at low temperature.Journal of Southeast University,2011,1(6):1231-1235.
    [47] 王芳,SCHMID M,蒋新,等.荧光原位杂交技术检测土壤中博德特氏菌探针的设计与应用.土壤学报,2010,7(1):51-57.WANG Fang,SCHMID M,JIANG Xin,et al.Development and application of specific probes for Bord Etelia SP.in soil by fluorescence in situ hybridization.Acta Pedologica Sinica,2010,7(1):51-57.
    [48] MAURET M,PAUL E,PEUTCH-COSTES E,et al.Application of experimentalresearch methodology to the study of nitrification in mixed culture.Water Sci Technol,1996,4(1/2):245-252.
    [49] BREUER L,KIESE R,BUTTERBACH-BAHL K.Temperature and moisture effects on nitrification rates in tropical rain-forest soils.Soil Science Society of America Journal,2002,6(3):834-844.
    [50] HERBERT R A.Nitrogen cycling in coastal marine ecosystems.FEMS Microbiology Reviews,1999,3(5):563-590.
    [51] 刘学燕,代明利,刘培斌.人工湿地在我国北方地区冬季应用的研究.农业环境科学学报,2004,3(6):1077-1081.LIU Xueyan,DAI Mingli,LIU Peibin.Application of subsurface flow constructed wetland in north area of China in winter.Journal of Agro-Environment Science,2004,3(6):1077-1081.
    [52] 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004:12-15.
    [53] DOSTA J,FERNANDEZ I,VAZQUEZ-PADIN J R,et al.Short-and long-term effects of temperature on the Anammox process.J Hazard Mater,2008,4(1/2/3):688-693.
    [54] 李林峰,年跃刚,蒋高明.植物吸收在人工湿地脱氮除磷中的贡献.环境科学研究,2009,2(3):337-342.LI Linfeng,NIAN Yuegang,JIANG Gaoming.Contribution of macrophytes assimilation in constructed wetlands to nitrogen and phosphorous removal.Research of Environmental Sciences,2009,2(3):337-342.
    [55] HE Shuying,CHEN Jing,LI Jixiang,et al.Dynamics of nitrobacteria community in biological contact oxidation process by DGGE and FISH.Bioinformatics and Biomedical Engineering,2010.doi: 10.1109/ICBBE.2010.5515470.
    [56] 黄秋媛,蒋宏忱,张传伦,等.云南地区热泉中氨氧化菌丰度对环境条件的响应.微生物学报,2010,0(1):132-136.HUANG Qiuyuan,JIANG Hongchen,ZHANG Chuanlun,et al.Abundance of ammonia-oxidizing microorganisms in response to environmental variables of hot springs in Yunnan province, China.Acta Microbiologica Sinica,2010,0(1):132-136.
    [57] SANTORO A E,FRANCIS C A,SLEYES N R,et al.Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary.Environmental Microbiology,2008,0(4):1068-1079.
    [58] JIN Tao,ZHANG Tong,YE Lin,et al.Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary,China.Applied Microbiology and Biotechnology,2011,0(3):1137-1145.
    [59] YE Wenjin,LIU Xianglong,LIN Shengqin,et al.The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu.FEMS Microbiology Ecology,2009,0(2):263-276.
    [60] LEININGER S,URICH T,SCHLOTER M,et al.Archaea predominate among ammonia-oxidizing prokaryotes in soils.Nature,2006,2(17):806-809.
  • 加载中
计量
  • 文章访问数:  2251
  • HTML全文浏览量:  11
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-01
  • 修回日期:  2014-03-25
  • 刊出日期:  2014-08-25

目录

    /

    返回文章
    返回