留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微量金属元素投加量优化组合对污泥发酵产乙酸的影响

王 健 刘晓玲 宋永会 杨 琦 王蒙蒙 胡雪静

王 健, 刘晓玲, 宋永会, 杨 琦, 王蒙蒙, 胡雪静. 微量金属元素投加量优化组合对污泥发酵产乙酸的影响[J]. 环境科学研究, 2015, 28(1): 149-156.
引用本文: 王 健, 刘晓玲, 宋永会, 杨 琦, 王蒙蒙, 胡雪静. 微量金属元素投加量优化组合对污泥发酵产乙酸的影响[J]. 环境科学研究, 2015, 28(1): 149-156.
WANG Jian, LIU Xiaoling, SONG Yonghui, YANG Qi, WANG Mengmeng, HU Xuejing. Optimizing Doses of Trace Metal Elements for Production of Acetic Acid from Excess Sludge Using Response Surface[J]. Research of Environmental Sciences, 2015, 28(1): 149-156.
Citation: WANG Jian, LIU Xiaoling, SONG Yonghui, YANG Qi, WANG Mengmeng, HU Xuejing. Optimizing Doses of Trace Metal Elements for Production of Acetic Acid from Excess Sludge Using Response Surface[J]. Research of Environmental Sciences, 2015, 28(1): 149-156.

微量金属元素投加量优化组合对污泥发酵产乙酸的影响

基金项目: 国家水体污染控制与治理科技重大专项(2012ZX07202-005);国家自然科学基金项目(21306180)

Optimizing Doses of Trace Metal Elements for Production of Acetic Acid from Excess Sludge Using Response Surface

  • 摘要: 污泥厌氧发酵生产乙酸是实现污泥减量化和资源化的有效途径. 为了提高污泥中的ρ(乙酸),分别考察了Fe2+、Co2+、Cu2+、Zn2+和Mn2+5种微量金属元素的投加影响. 结果表明,5种微量元素都可以促进污泥中乙酸的产生,作用大小依次为Co2+>Mn2+>Fe2+> Zn2+>Cu2+. 但当Fe2+、Co2+、Cu2+、Zn2+和Mn2+投加量(以w计)分别超过0.100 0%、0.006 0%、0.002 0%、0.004 0%和0.100 0%时,ρ(乙酸)却明显下降. 分别选取Fe2+(0.040 0%~0.150 0%)、Co2+(0.002 0%~0.008 0%)、Cu2+(0.000 5%~0.006 0%)、Zn2+(0.000 5%~0.010 0%)和Mn2+(0.040 0%~0.150 0%)进行响应面条件优化试验. 在Fe2+、Mn2+投加量均为0.090 0%,Co2+、Zn2+投加量均为0.005 0%,Cu2+投加量为0.003 5%的组合优化条件下,ρ(乙酸)高达3 452 mg/L,比优化前提高了61.80%. 最优的微量元素投量组合条件下获得的试验结果与二次响应面回归模型预测值(3 475 mg/L)拟合率高达99.34%,表明所建立的回归模型可行.

     

  • [1] 戴晓虎.我国城镇污泥处理处置现状及思考.给水排水,2012,8(2):1-5.DAI Xiaohu.The status and thinking of town sludge disposal in China .Water and Wastewater Engineering,2012,8(2):1-5.
    [2] 王睿坤,刘建忠,周俊虎,等.城市污泥特性及其干化技术.给水排水,2012,6(S1):153-158.WANG Ruikun,LIU Jianzhong,ZHOU Junhu,et al.Urban sludge characteristics and drying technology.Water and Wastewater Engineering,2012,6(S1):153-158.
    [3] KIM Donghoom,CHO Sikyung,LEE Mokwon,et al.Increased solubilization of excess sludge does not always result in enhanced anaerobic digestion efficiency.Bioresource Technology,2013,3(1):660-664.
    [4] CARLO P,ANTONIO L,VINCENZO L,et al.Biodiesel from dewatered sludge:a two-step process for a more advantageous production.Chemosphere,2013,2(6):667-673.
    [5] 程国淡,黄青,张凯松.热解温度和时间对生物干化污泥生物炭性质的影响.环境工程学报,2013,7(3):1133-1138.CHENG Guodan,HUANG Qing,ZHANG Kaisong,et al.Effects of temperature and duration of properties of bio-dried sludge biochar.Chinese Journal of Environmental Engineering,2013,7(3):1133-1138.
    [6] ZHOU Aijun,DU Jingwen,VARRONE C,et al.VFAs bioproduction from waste activated sludge by coupling pretreatments with Agaricus bisporus substrates conditioning.Process Biochemistry,2014,9(2):283-289.
    [7] WANG Jin,LIU He,FU Bo,et al.Trophic link between syntrophic acetogens and homoacetogens during the anaerobic acidogenic fermentation of sewage sludge.Biochemical Engineering Journal,2013,0(1):1-8.
    [8] WU Haiyan,GAO Junyan,YANG Dianhai,et al.Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism.Chemical Engineering Journal,2010,0(1):1-7.
    [9] HUANG Long,CHEN Ben,MARCO P,et al.Inoculation and alkali coeffect in volatile fatty acids production and microbial community shift in the anaerobic fermentation of waste activated sludge.Bioresource Technology,2014,3(1):87-94.
    [10] KYLEROSS M.Production of acetic acid from waste biomass.Georgia:Georgia Institute of Technology,1998.
    [11] LEE W S,CHUA A S M,YEOH H K,et al.A review of the production and applications of waste-derived volatile fatty acids.Chemical Engineering Journal,2014,5(1):83-99.
    [12] SINGHANIA R R,PATEL A K,CHRISTOPHE G,et al.Biological upgrading of volatile fatty acids,key intermediates for the valorization of biowaste through dark anaerobic fermentation.Bioresource Technology,2013,5(1):166-174.
    [13] JIA Shuting,DAI Xiaohu,ZHANG Dong,et al.Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition.Water Research,2013,7(13):4576-4584.
    [14] MORGAN-SAGASTUME F,VALENTINO F,HJORT M,et al.Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment.Water Science and Technology,2014,9(1):177-184.
    [15] YAN Peng,JI Fangying,WANG Jing,et al.Evaluation of sludge reduction and carbon source recovery from excess sludge by the advanced sludge reduction,inorganic solids separation,phosphorus recovery,and enhanced nutrient removal (SIPER) wastewater treatment process.Bioresource Technology,2013,0(1):344-351.
    [16] XIONG Huilei,CHEN Jinluan,WANG Hui,et al.Influences of volatile solid concentration,temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids.Bioresource Technology,2012,9(1):285-292.
    [17] RUGHOONUNDUN H,MOHEE R,HOLTZAPPLE M T.Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse.Bioresource Technology,2012,2(1):91-97.
    [18] 张杰,文湘华.常温下剩余污泥水解酸化强化方法研究进展.中国给水排水,2009,5(18):10-14.ZHANG Jie,WEN Xianghua.Research progress in enhancing hydrolysis and acidification of excess sludge at normal temperature.China Water & Wastewater,2009,5(18):10-14.
    [19] YANG Qi,YI Jun,LUO Kun,et al.Improving disintegration and acidification of waste activated sludge by combined alkaline and microwave pretreatment.Process Safety and Environmental Protection,2013,1(1):521-526.
    [20] YANG Xue,WAN Chunli,LEE D,et al.Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12 .Bioresource Technology,2014,8(1):173-179.
    [21] LO H M,CHIANG C F,TAOS H C,et al.Effects of spiked metals on the MSW anaerobic digestion.Waste Management Research,2012,0(1):32-48.
    [22] GLASS J B,ORPHAN V J.Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide.Microbiology,2012,1(3):1-19.
    [23] DEMIREL B,SCHERER P.Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane.Biomass and Bioenergy,2011,5(1):992-998.
    [24] TAKASHIMA M,SHIMADA K,SPEECE R E.Minimum requirements for trace metals (iron,nickel,cobalt,and zinc) in thermophilic and mesophilic methane fermentation from glucose.Water Environment Research,2011,3(4):339-346.
    [25] HONG Qiang,LANG Dongli,LI Yu.High-solid mesophilic methane fermentation of food waste with an emphasis on iron,cobalt,and nickel requirements.Bioresource Technology,2012,3(1):21-27.
    [26] 樊丽,徐龙君,王辉.微量元素对牛粪低温厌氧发酵的影响.环境工程学报,2012,6(8):2809-2812.FAN Li,XU Longjun,WANG Hui,et al.Effects of trace elements on anaerobic fermentation of cattle manure at low temperature.Chinese Journal of Environmental Engineering,2012,6(8):2809-2812.
    [27] ZANDVOORT M H,HULLEBUSCH E D,FERMOSO F G,et al.Trace metals in anaerobic granular sludge reactors:bioavailability and dosing strategies.Engineering in Life Science,2006,6(3):293-301.
    [28] YE Fenxia,JI Haizhuang,YE Yangfang.Effect of potassium ferrate on disintegration of waste activated sludge (WAS).Journal of Hazardous Materials,2012,9(1):164-168.
    [29] LIU Xiaoling,LIU He,CHEN Jinhuan,et al.Enhancement of solubilization and acidification of waste activated sludge by pretreatment.Waste Management,2008,8(12):2614-2622.
    [30] 刘国荣,张郡莹,王成涛,等.响应面法优化双歧杆菌B04代谢产细菌素的发酵条件.食品科学,2013,4(3):147-152.LIU Guorong,ZHANG Junying,WANG Chengtao,et al.Optimization of fermentation conditions for bacteriocin production from Bifidbacterium animal B04 by response surface methodology.Food Science,2013,4(3):147-152.
    [31] 姜彬慧,李若男,李凤达,等.类芽孢杆菌产絮凝多糖发酵条件优化及成分分析.环境科学研究,2014,7(5):547-553.JIANG Binhui,LI Ruonan,LI Fengda,et al.Optimization of fomposition analysis of polysaccharide-based bioflocculant produced by Paenibacillus sp.A9.Research of Environmental Sciences,2014,7(5):547-553.
    [32] 方琳,刘振华,陶虎春.超临界水氧化法处理剩余污泥的参数优化.环境科学研究,2011,4(9):1029-1034.FANG Lin,LIU Zhenhua,TAO Huchun.Parameter optimization of excess sludge treatment by supercritical water oxidation.Research of Environmental Sciences,2011,4(9):1029-1034.
    [33] FERMOSO F G,BARTACEK J,JANSEN S,et al.Metal supplementation to UASB bioreactors:from cell-metal interactions to full-scale application.The Science of the Total Environment,2009,7(1):3652-3667.
    [34] 郑国臣,赵峰,李建政.微量元素对ABR发酵产氢产甲烷的影响.中国给水排水,2012,8(3):20-23.ZHENG Guochen,ZHAO Feng,LI Jianzheng.Effect of trace elements on production of ABR methane fermention.China Water & Wastewater,2012,8(3):20-23.
    [35] JIA Shuting,DAI Xiaohu,ZHANG Dong,et al.Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition.Water Research,2013,7(13):4576-4584.
    [36] TAN R,MIYANAGA K,UY D,et al.Effect of heat-alkaline treatment as a pretreatment method on volatile fatty acid production and protein degradation in excess sludge,pure proteins and pure cultures.Bioresource Technology,2012,8(1):390-398.
  • 加载中
计量
  • 文章访问数:  1994
  • HTML全文浏览量:  22
  • PDF下载量:  3443
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-15
  • 修回日期:  2014-07-18
  • 刊出日期:  2015-01-25

目录

    /

    返回文章
    返回