留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳酸盐矿化菌对模拟放射性Sr2+的成矿作用

竹文坤 牟 涛 段 涛 张友魁 罗学刚

竹文坤, 牟 涛, 段 涛, 张友魁, 罗学刚. 碳酸盐矿化菌对模拟放射性Sr2+的成矿作用[J]. 环境科学研究, 2015, 28(1): 157-162.
引用本文: 竹文坤, 牟 涛, 段 涛, 张友魁, 罗学刚. 碳酸盐矿化菌对模拟放射性Sr2+的成矿作用[J]. 环境科学研究, 2015, 28(1): 157-162.
ZHU Wenkun, MU Tao, DUAN Tao, ZHANG Youkui, LUO Xuegang. Metallogenesis of Simulated Radioactive Sr2+ by Carbonate-Mineralization Bacteria[J]. Research of Environmental Sciences, 2015, 28(1): 157-162.
Citation: ZHU Wenkun, MU Tao, DUAN Tao, ZHANG Youkui, LUO Xuegang. Metallogenesis of Simulated Radioactive Sr2+ by Carbonate-Mineralization Bacteria[J]. Research of Environmental Sciences, 2015, 28(1): 157-162.

碳酸盐矿化菌对模拟放射性Sr2+的成矿作用

基金项目: 国家自然科学基金项目(11075134);国家国防科技工业局项目(科工二司[2011]1081号);核废物与环境安全国防重点学科实验室开放基金项目(12zxnp08)

Metallogenesis of Simulated Radioactive Sr2+ by Carbonate-Mineralization Bacteria

  • 摘要: 选取碳酸盐矿化菌进行培养,利用其在代谢过程中分泌的尿素酶分解尿素产生CO32-,从而将游离态的放射性Sr2+转化为稳定态SrCO3. 通过能谱分析(EDS)、扫描电子显微镜(SEM)、X射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)对沉淀产物进行分析,并计算核素固结率. 结果表明:微生物诱导沉积的沉淀为大小混杂、表面多孔的SrCO3晶体颗粒,并相互黏结形成不规则的团聚体;c(Sr2+)、ρ(尿素)及培养时间等对SrCO3晶体形貌产生影响;菌体本身作为成核位点参与了碳酸盐矿化菌诱导Sr2+的矿化过程. 当c(Sr2+)为0.05 mol/L、ρ(尿素)为30 g/L、pH为8.0并在30 ℃下培养72 h时,生成较大的微生物矿化物团聚体,对Sr2+固结率可达98.32%,可实现放射性核素稳定化处置.

     

  • [1] 史建君.放射性核素对生态环境的影响.核农学报,2011,5(2):397-403.SHI Jianjun.Nuclear accident impact on the ecological environment .Journal of Nuclear Agricultural Science,2011,5(2):397-403.
    [2] DAS N.Remediation of radionuclide pollutants through biosorption:an overview.Clean-Soil,Air,Water,2012,0(1):16-23.
    [3] MIMURA T,MIMURA M,KOBAYASHI D,et al.Radioactive pollution and accumulation of radionuclides in wild plants in Fukushima .Journal of Plant Research,2014,7(1):5-10.
    [4] ESALAH O J,WEBER M E,VERA J H.Removal of lead from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate .Separation and Purification Technology,2000,8(1):25-36.
    [5] BELLENGER J P,STAUNTON S.Adsorption and desorption of 85Sr and 137Cs on reference minerals,with and without inorganic and organic surface coatings .Journal of Environmental Radioactivity,2008,9(5):831-840.
    [6] MONTAA M,CAMACHO A,SERRANO I,et al.Removal of radionuclides in drinking water by membrane treatment using ultrafiltration,reverse osmosis and electrodialysis reversal .Journal of Environmental Radioactivity,2013,5:86-92.
    [7] SINGARE P U,LOKHANDE R S.Studies on ion-isotopic exchange reactions using nuclear grade ion exchange resins .Ionics,2012,8(4):351-357.
    [8] GODE F,PEHLIVAN E.A comparative study of two chelating ion-exchange resins for the removal of chromium(Ⅲ) from aqueous solution .Journal of Hazardous Materials,2003,0(1/2/3):231-243.
    [9] RAJ K,PRASAD K K,BANSAL N K.Radioactive waste management practices in India .Nuclear Engineering and Design,2006,6(7/8):914-930.
    [10] KARACAN F.The simple radiochemical determination of 90Sr in environmental solid samples by solvent extraction .Journal of Radioanalytical and Nuclear Chemistry,2011,8(3):685-691.
    [11] 车春霞,滕元成,桂强.放射性废物固化处理的研究及应用现状.材料导报,2006,0(2):94-97.CHE Chunxia,TENG Yuancheng,GUI Qiang.Research and application status of radioactive waste solidification .Materials Review,2006,0(2):94-97.
    [12] 李小燕,张叶.放射性废水处理技术研究进展.铀矿冶,2010,9(3):153-156.LI Xiaoyan,ZHANG Ye.Research advances in treatment technology of radioactive wastewater .Uranium Mining and Metallurgy,2010,9(3):153-156.
    [13] ZCAN A,ZCAN A S,TUNALI S,et al.Determination of the equilibrium,kinetic and thermodynamic parameters of adsorption of copper(Ⅱ) ions onto seeds of Capsicum annuum .Journal of Hazardous Materials,2005,4(1):200-208.
    [14] DANG V B,DOAN H D,DANG-VU T,et al.Equilibrium and kinetics of biosorption of cadmium and copper ions by wheat straw .Bioresource Technology,2009,0(1):211-219.
    [15] PATERSON-BEEDLE M,MACASKIE L E,LEE C H,et al.Utilisation of a hydrogen uranyl phosphate-based ion exchanger supported on a biofilm for the removal of cobalt,strontium and caesium from aqueous solutions .Hydrometallurgy,2006,3(1/2/3/4):141-145.
    [16] 许燕波,钱春香,陆兆文.微生物矿化修复铅离子污染的研究.化工时刊,2012,6(2):14-17.XU Yanbo,QIAN Chunxiang,LU Zhaowen.Study on Pb2+ mineralized by bacteria for remediation .Chemical Industry Times,2012,6(2):14-17.
    [17] 袁晓露,周世华.MICP在建筑材料中的应用研究.人民长江,2012,3(3):76-79.YUAN Xiaolu,ZHOU Shihua.Study of MICP and application in construction materials .Yangtze River,2012,3(3):76-79.
    [18] JONKERS H M,SCHLANGEN E.Development of a bacteria-based self-healing concrete .Amsterdam:FIB The Netherlands,2008,1:425-430.
    [19] JONKERS H M,THIJSSEN A,MUYZER G,et al.Application of bacteria as self-healing agent for the development of sustainable concrete .Ecological Engineering,2010,6:230-235.
    [20] JONKERS H M,SCHLANGEN E.A two component bacteria-based self-healing concrete .Concrete Repair,Rehabilitation and Retrofitting,2009,1:119-120.
    [21] 王兰新,马俊格,邵雪飞,等.废物库周围地下水中的放射性核素铀和锶-90分布研究.四川环境,2002,1(1):88-90.WANG Lanxin,MA Junge,SHAO Xuefei,et al.Study on radionuclide distribution of groundwater around waste vaults .Sichuan Environment,2002,1(1):88-90.
    [22] POPA K,CECAL A,DROCHIOIU G,et al.Saccharomyces cerevisiae as uranium bioaccumulating material:the influence of contact time, pH and anion nature .Nukleonika,2003,8(3):121-125.
    [23] MERROUN M L,RAFF J,ROSSBERG A,et al.Complexation of uranium by cells and s-layer sheets of bacillus sphaericus JG-A12 .Applied and Environmental Microbiology,2005,1(9):5532-5543.
    [24] AVERY S V,TOBIN J M.Mechanisms of strontium uptake by laboratory and brewing strains of saccharomyces cerevisiae .Applied and Environmental Microbiology,1992,8(12):3883-3889.
    [25] 陈灿,王建龙.酿酒酵母吸附重金属离子的研究进展.中国生物工程杂志,2006,6(1):69-76.CHEN Can,WANG Jianlong.Review on biosorption of heavy metal by saccharomyces cerevisiae .China Biotechnology, 2006,6(1):69-76.
    [26] DAVIS T A,VOLESKY B,MUCCI A.A review of the biochemistry of heavy metal biosorption by brown algae .Water Research,2003,7(18):4311-4330.
    [27] MUYNCK W D,BELIE N D,VERSTRAETE W.Microbial carbonate precipitation in construction materials:a review .Ecological Engineering,2010,6:118-136.
    [28] 刘明学.微生物与锶铀相互作用及其机理研究.成都:电子科技大学,2011:25-28.
    [29] FERRIS F G,BEVERIDGE T J,FYFE W S.Iron-silica crystallite nucleation by bacteria in a geothermal sediment .Nature,1986,0:609-611.
    [30] WANG J,VAN TITTELBOOM K,DE BELIE N,et al.Use of silica gel or polyurethane immobilized bacteria for self-healing concrete .Construction and Building Materials,2012,6(1):532-540.
  • 加载中
计量
  • 文章访问数:  2170
  • HTML全文浏览量:  8
  • PDF下载量:  3642
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-13
  • 修回日期:  2014-04-09
  • 刊出日期:  2015-01-25

目录

    /

    返回文章
    返回