留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然有机质与重金属相互作用的分析方法进展

李 璐 王震宇 林道辉 吴丰昌

李 璐, 王震宇, 林道辉, 吴丰昌. 天然有机质与重金属相互作用的分析方法进展[J]. 环境科学研究, 2015, 28(2): 182-189.
引用本文: 李 璐, 王震宇, 林道辉, 吴丰昌. 天然有机质与重金属相互作用的分析方法进展[J]. 环境科学研究, 2015, 28(2): 182-189.
LI Lu, WANG Zhenyu, LIN Daohui, WU Fengchang. Advances in Analytical Methods for Investigating the Interaction between Natural Organic Matters and Heavy Metals[J]. Research of Environmental Sciences, 2015, 28(2): 182-189.
Citation: LI Lu, WANG Zhenyu, LIN Daohui, WU Fengchang. Advances in Analytical Methods for Investigating the Interaction between Natural Organic Matters and Heavy Metals[J]. Research of Environmental Sciences, 2015, 28(2): 182-189.

天然有机质与重金属相互作用的分析方法进展

基金项目: 国家重点基础研究发展计划(973)项目(2014CB441104);中央高校基本科研业务费专项资金(2014FZA6009)

Advances in Analytical Methods for Investigating the Interaction between Natural Organic Matters and Heavy Metals

  • 摘要: 由于NOM(natural organic matter,天然有机质)种类及来源的多样性及其结构和性质的复杂性,导致NOM与重金属之间的相互作用存在一定的不确定性. 针对NOM与重金属之间相互作用的一系列分析方法,重点阐述了谱学分析有关分析方法、等温滴定微量热法、溶出伏安法、zeta电位变化分析以及高效体积排阻色谱法等,这些方法从NOM的谱学特征、zeta电位、分子量、热力学参数及电化学性质等方面对二者之间的相互作用进行深入研究,取得了一定进展,但也存在不足. 针对各分析方法的特点及其局限性,建议今后联合使用多种方法分析NOM与重金属之间的相互作用机制;通过确定不同影响因素对二者结合作用的大小和权重,建立多因素影响下二者相互作用的模型,以定性、定量分析天然水体中NOM与重金属的相互作用.

     

  • [1] 吴丰昌,邢宝山.天然有机质及其在环境中的作用机理.北京:地质出版社,2010:135-142.
    [2] FILELLA M.Freshwaters:which NOM matters?.Environmental Chemistry Letters,2009,7(1):21-35.
    [3] KORDEL W,DASSENAKIS M,LINTELMANN J.The importance of natural organic material for environmental processes in waters and soils.Pure and Applied Chemistry,1997,9(7):1571-1600.
    [4] MATILAINEN A,GJESSING E T,LAHTINEN T.An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment.Chemosphere,2011,3(11):1431-1442.
    [5] 吴丰昌,王立英,黎文,等.天然有机质及其在地表环境中的重要性.湖泊科学,2008,0(1):1-12.WU Fengchang,WANG Liying,LI Wen,et al.Natural organic matter and its significance in terrestrial surface environment.Journal of Lake Sciences,2008,0(1):1-12.
    [6] ARSLAN G,EDEBALI S,PEHLIVAN E.Physical and chemical factors affecting the adsorption of Cr(Ⅵ) via humic acids extracted from brown coals.Desalination,2010,5:117-123.
    [7] PHILLIPS C L,REDIER T Z,PEAK D.Aqueous Cu(Ⅱ)-organic complexation studied in situ using soft X-ray and vibrational spectroscopies.Environmental Science & Technology,2013,7(24):14290-14297.
    [8] YATES L M,WANDRUSZCA R V.Decontamination of polluted water by treatment with a crude humic acid blend.Environmental Science & Technology,1999,3(12):2076-2080.
    [9] PEHLIVAN E,ARSLAN G.Comparison of adsorption capacity of young brown coals and humic acids prepared from different coal mines in Anatolia.Journal of Hazardous Materials,2006,8(2):401-408.
    [10] LI Zhenze,KATSUMI T,IMAIZUMI S,et al.Cd(Ⅱ) adsorption on various adsorbents obtained from charred biomaterials.Journal of Hazardous Materials,2010,3(1/2/3):410-420.
    [11] CHRISTL I,METZGER A,HEIDMANN I,et al.Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding.Environmental Science & Technology,2005,9(14):5319-5326.
    [12] 李光林,魏世强,牟树森.土壤胡敏酸对Pb的吸附特征与影响因素.农业环境科学学报,2004,3(2):308-312.LI Guanglin,WEI Shiqiang,MOU Shusen.Adsorptive characteristics and influence factors of humic acid on lead in soil.Journal of Agro-Environmenta Science,2004,3(2):308-312.
    [13] TOWN R M,FILELLA M.Crucial role of the detection window in metal ion speciation analysis in aquatic systems:the interplay of thermodynamic and kinetic factors as exemplified by nickel and cobalt.Analytica Chimica Acta,2001,6(2):285-293.
    [14] NEUBAUER E,FRANK K,HOFMANN T.Using FLOWFFF and HPSEC to determine trace metal colloid associations in wetland runoff.Water Research,2013,7(8):2757-2769.
    [15] WU Jun,ZHANG Hua,HE Pinjing,et al.Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis.Water Research,2011,5(4):1711-1719.
    [16] CHEN Wen,WESTERHOFF P,LEENHEER J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.Environmental Science & Technology,2003,7(24):5701-5710.
    [17] LU Fan,CHANG Chenghsuan,LEE Duujong,et al.Dissolved organic matter with multi-peak fluorophores in landfill leachate.Chemosphere,2009,4(4):575-582.
    [18] HENDERSON R K,BAKER A,MURPHY K R,et al.Fluorescence as a potential monitoring tool for recycled water systems:a review.Water Research,2009,3(4):863-881.
    [19] YAN Mingquan,LI Mingyang,WANG Dongsheng,et al.Optical property of iron binding to Suwannee River fulvic acid.Chemosphere,2013,1(7):1042-1048.
    [20] YAN Mingquan,WANG Dongsheng,GREGORY V K,et al.Quantifying metal ions binding onto dissolved organic matter using log-transformed absorbance spectra.Water Research,2013,7(7):2603-2611.
    [21] XU Huacheng,YU Guanghui,YANG Liuyan,et al.Combination of two-dimensional correlation spectroscopy and parallel factor analysis to characterize the binding of heavy metals with DOM in lake sediments.Journal of Hazardous Materials,2013,3(2):412-421.
    [22] HE Zhongqi,OHON T,Wu Fengchang,et al.Capillary electrophoresis and fluorescence excitation-emission matrix spectroscopy for characterization of humic substances.Soil Science Society of America Journal,2008,2(5):1248-1255.
    [23] YU Guanghui,LUO Yihong,WU Minjie,et al.PARAFAC modeling of fluorescence excitation-emission spectra for rapid assessment of compost maturity.Bioresource Technology,2010,1(21):8244-8251.
    [24] GOLDMAN J H,ROUNDS S A,NEEDOBA J A.Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream.Environmental Science & Technology,2012,6(8):4374-4381.
    [25] SHENG Guoping,XU Juan,LI Weihua,et al.Quantification of the interactions between Ca2+,Hg2+ and extracellular polymeric substances (EPS) of sludge.Chemosphere,2013,3(7):1436-1441.
    [26] YU Guanghui,WU Minjie,LUO Yihong,et al.Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity.Waste Management,2011,1(8):1729-1736.
    [27] LI Wentao,XU Zixiao,LI Aimin,et al.HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and DOM analysis.Water Research,2013,7(3):1246-1256.
    [28] BAI Yingchen,WU Fengchang,LIU Congqiang,et al.Ultraviolet absorbance titration for determining stability constants of humic substances with Cu(Ⅱ) and Hg(Ⅱ).Analytica Chimica Acta,2008,6(1):115-121.
    [29] HUR J,LEE B.Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy.Chemosphere,2011,3(11):1603-1611.
    [30] SHENG Guoping,XU Juan,LUO Hongwei,et al.Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge.Water Research,2013,7(2):607-614.
    [31] LIN Daohui,TIAN Xiaoli,LI Tingting,et al.Surface-bound humic acid increased Pb2+ sorption on carbon nanotubes.Environmental Pollution,2012,7:138-147.
    [32] SELIM REZA A H M,JEAN J S,LEE Mingkuo,et al.The binding nature of humic substances with arsenic in alluvial aquifers of Chianan Plain,southwestern Taiwan.Journal of Geochemical Exploration,2012,4:98-108.
    [33] JERZYKIEWICZ M.The effect of Hg(Ⅱ) ions on the free radicals of humic substances and their model compounds.Chemosphere,2013,2(4):445-450.
    [34] CHAI Xiaoli,HAO Yongxia,LIU Guixiang,et al.Spectroscopic studies of the effect of aerobic conditions on the chemical characteristics of humic acid in landfill leachate and its implication for the environment.Chemosphere,2013,1(7):1058-1063.
    [35] FULDA B,VOEGELIN A,MAURER F,et al.Copper redox transformation and complexation by reduced and oxidized soil humic acid:1.X-ray absorption spectroscopy study.Environmental Science & Technology,2013,7(19):10903-10911.
    [36] HOFFMANN M,MIKUTTA C,KRETZSCHMAR R.Arsenite binding to natural organic matter:spectroscopic evidence for ligand exchange and ternary complex formation.Environmental Science & Technology,2013,7(21):12165-12173.
    [37] XIONG Juan,LUUK K K,TAN Wenfeng,et al.Lead binding to soil fulvic and humic acids:NICA-Donnan modeling and XAFS spectroscopy.Environmental Science & Technology,2013,7(20):11634-11642.
    [38] TORBJORN K,PER P,ULF S.Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulfur groups in natural organic matter.Environmental Science & Technology,2005,9(9):3048-3055.
    [39] MANCEAU A,MATYNIA A.The nature of Cu bonding to natural organic matter.Geochimica et Cosmochimica Acta,2010,4(9):2556-2580.
    [40] CHAI Xiaoli,TAKAYUKI S,CAO Xiaoyan,et al.Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill.Chemosphere,2007,9(9),1446-1453.
    [41] NEBBIOSO A,PICCOLO A.Molecular rigidity and diffusivity of Al3+ and Ca2+ humates as revealed by NMR spectroscopy.Environmental Science & Technology,2009,3(7):2417-2424.
    [42] CHEN Jie,GU Baohua,EUGENE J,et al.Spectroscopic characterization of the structural and functional properties of natural organic matter fractions.Chemosphere,2002,8(1):59-68.
    [43] CHRISTOFORIDIS K C,SUN U,DELIGIANNAKIS Y.Effect of metal ions on the indigenous radicals of humic acids:high field electron paramagnetic resonance study.Environmental Science & Technology,2010,4(18):7011-7016.
    [44] HERTKORN N,PERDUE E M,KETTRUP A.A potentiometric and 113Cd NMR study of cadmium complexation by natural organic matter at two different magnetic field strengths.Analytical Chemistry,2004,6(21):6327-6341.
    [45] LI Jian,MICHAEL E P,LESLIE T G.Using cadmium-113 NMR spectrometry to study metal complexation by natural organic matter.Environmental Science & Technology,1998,2(4):483-487.
    [46] XU Juan,SHENG Guoping,MA Ying,et al.Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system.Water Research,2013,7(14):5298-5306.
    [47] GILBERTO A,JORGE C M.Complexation of Cd(Ⅱ) and Pb(Ⅱ) with humic acids studied by anodic stripping voltammetry using differential equilibrium functions and discrete site models.Organic Geochemistry,2002,3(10):1171-1182.
    [48] XUE Hanbin,LAURA S.Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters.Aquatic Geochemistry,1999,5(4):313-335.
    [49] ROZAN T F,BENOIT G,MARSH H,et al.Intercomparison of DPASV and ISE for the Measurement of Cu complexation characteristics of NOM in freshwater.Environmental Science & Technology,1999,3(10):1766-1770.
    [50] RYAN D K,WEBER J H.Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid.Analytical Chemistry,1982,4:986-990.
    [51] TRUBETSKOJ O A,HATCHER P G,TRUBETSKAYA O E.1H-NMR and 13C-NMR spectroscopy of chernozem soil humic acid fractionated by combined size-exclusion chromatography and electrophoresis.Chemistry and Ecology,2010,6(4):315-325.
    [52] LIU Fengling,XU Zhaoyi,WAN Haiqing,et al.Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.Environmental Toxicology and Chemistry,2011,0(4):793-800.
    [53] MELANIE A T,SUZANNE M,KRISZTINA K,et al.Dissolved organic carbon reduces uranium bioavailability and toxicity:1.characterization of an aquatic fulvic acid and its complexation with uranium(Ⅵ).Environmental Science & Technology,2011,5(7):3075-3081.
    [54] REILLER P E,BREVET J,NEBBIOSO A,et al.Europium(Ⅲ) complexed by HPSEC size-fractions of a vertisol humic acid:small differences evidenced by time-resolved luminescence spectroscopy.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011,8(3):1173-1179.
  • 加载中
计量
  • 文章访问数:  2246
  • HTML全文浏览量:  11
  • PDF下载量:  1948
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-02-25

目录

    /

    返回文章
    返回