留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

秦皇岛褐潮暴发敏感海域细菌种群特征

王丽平 南炳旭 扈培龙

王丽平, 南炳旭, 扈培龙. 秦皇岛褐潮暴发敏感海域细菌种群特征[J]. 环境科学研究, 2015, 28(6): 899-906.
引用本文: 王丽平, 南炳旭, 扈培龙. 秦皇岛褐潮暴发敏感海域细菌种群特征[J]. 环境科学研究, 2015, 28(6): 899-906.
WANG Liping, NAN Bingxu, HU Peilong. Bacterial Community Characteristics in Qinhuangdao Coastal Area, Bohai Sea:A Region with Recurrent Brown Tide Outbreaks[J]. Research of Environmental Sciences, 2015, 28(6): 899-906.
Citation: WANG Liping, NAN Bingxu, HU Peilong. Bacterial Community Characteristics in Qinhuangdao Coastal Area, Bohai Sea:A Region with Recurrent Brown Tide Outbreaks[J]. Research of Environmental Sciences, 2015, 28(6): 899-906.

秦皇岛褐潮暴发敏感海域细菌种群特征

基金项目: 中央级公益性科研院所基本科研业务专项(gyk5091301)

Bacterial Community Characteristics in Qinhuangdao Coastal Area, Bohai Sea:A Region with Recurrent Brown Tide Outbreaks

  • 摘要: 为了掌握细菌种群在褐潮生消过程中的作用,于2013年4—8月采用高通量测序技术调查了秦皇岛近岸海域褐潮暴发敏感海域细菌种群的结构特征. 结果表明:研究区域内细菌种群丰度和多样性在8月最高、5月最低;不同月份水体中细菌种群种类组成及其丰度均存在明显差异,其中第一优势门为变形菌门(Proteobacteria),2013年4月、5月、6月、7月和8月相对丰度分别为46.26%、41.11%、49.69%、38.48%和40.55%;第一优势科为α-变形菌(α-proteobacteria),相对丰度分别为42.20%、34.36%、44.68%、32.17%和28.79%;4月、5月和7月第一优势属为Chloroplast_norank,相对丰度分别为21.48%、16.44%和11.66%;6月第一优势属为Roseobacter_clade_DC5-80-3_lineage,相对丰度为17.85%;8月第一优势属为Candidatus_pelagibacter,相对丰度为15.55%. 典范相关分析(CCA)结果显示,ρ(NO3-N)、ρ(Chla)和富营养化指数(卡尔森指数,TLI)是研究区域内影响细菌种群结构的主要因素,表明细菌种群结构特征与水体富营养化状态、藻类生物量及其特征密切相关,细菌对研究区域有害赤潮暴发的调节作用还有待进一步研究.

     

  • [1] WETZEL R G.Freshwater ecology:changes,requirements,and future demands.Limnology,2000,1(1):3-9.
    [2] BORSODI A K,VLADR P,CECK G,et al.Bacterial activities in the sediment of Lake Velencei,Hungary.Hydrobiologia,2003,6(1/2/3):721-728.
    [3] MICSINAI A,BORSODI A K,CSENGENS V,et al.Rhizomeassociated bacterial communities of healthy and declining reed stands in Lake Velencei,Hungary.Hydrobiologia,2003,6(1/2/3):707-713.
    [4] COTTRELL M T,KIRCHMAN D L.Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware Estuary.Limnology and Oceanography,2003,8:168-178.
    [5] AZAM F,WORDEN A Z.Microbes,molecules,and marine ecosystems.Science,2004,3:1622-1624.
    [6] MARTINY J B,BOHANNAN B J,BROWN J H,et al.Microbial biogeography:putting microorganisms on the map.Nature Reviews Microbiology,2006,4(2):102-112.
    [7] AMANN R I,LUDWIG W,SCHLEIFER K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiological Reviews,1995,9(1):143-169.
    [8] BEN-DOV E,KRAMARKY-WINTER E,KUSHMARO A.An in situ method for cultivating microorganisms using a double encapsulation technique.FEMS Microbiology Ecology,2009,8(3):363-371.
    [9] HUGENHOTZ P,GOEBEL B M,PACE N R.Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity.Journal of Bacteriology,1998,0(18):4765-4774.
    [10] QIAN P,WANG Y,LEE O,et al.Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing.The ISME Journal,2011,5(3):507-518.
    [11] 王兴春,杨致荣,王敏,等.高通量测序技术及其应用.中国生物工程杂志,2012,2(1):109-114.WANG Xingchun,YANG Zhirong,WANG Min,et al.High-throughput sequencing technology and its application.China Biotechnology,2012,2(1):109-114.
    [12] ROESCH L F,FULTHORPE R R,RIVA A,et al.Pyrosequencing enumerates and contrasts soil microbial diversity.The ISME Journal,2007,1(4):283-290.
    [13] KIM O S,IMHOFF J F,WITZEL K P,et al.Distribution of denitrifying bacterial communities in the stratified water column and sediment-water interface in two freshwater lakes and the Baltic Sea.Aquatic Ecology,2011,5(1):99-112.
    [14] ZHANG Qingchun,QIU Limei,YU Rencheng,et al.Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China.Harmful Algae,2012,9:117-124.
    [15] QIU J.China third country to be hit by “brown tide”.Nature,2012.doi: 10.1038/nature.2012.11015.
    [16] BAKER G,SMITH J J,COWAN D A.Review and re-analysis of domain-specific 16S primers.Journal of Microbiological Methods,2003,5(3):541-555.
    [17] ZHENG Binghui,WANG Liping,LIU Lusan.Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea,China.Microbiological Research,2014,9:585-592.
    [18] SCHLOSS P D,WESTCOTT S L,RYABIN T,et al.Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities.Applied and Environmental Microbiology,2009,5(23):7537-7541.
    [19] QUAST C,PRUESSE E,YILMAZ P,et al.The SILVA ribosomal RNA gene database project:improved data processing and web-based tools.Nucleic Acids Research,2013.doi: 10.1093/nar/gks1219.
    [20] MCCAIG A E,PHILLIPS C J,STEPHEN J R,et al.Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments.Applied and Environmental Microbiology,1999,5(1):213-220.
    [21] ASAMI H,AIDA M,WATANNABE K.Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture.Applied and Environmental Microbiology,2005,1(6):2925-2933.
    [22] 邢奕,司艳晓,洪晨,等.铁矿区重金属污染对土壤微生物群落变化的影响.环境科学研究,2013,6(11):1201-1211.XING Yi,SI Yanxiao,HONG Chen,et al.Impact of long-term heavy metal pollution on microbial community in iron mine soil.Research of Environmental Sciences,2013,6(11):1201-1211.
    [23] PAERL H W,DYBLE J,MOISANDER P H,et al.Microbial indicators of aquatic ecosystem change:current applications to eutrophication studies.FEMS Microbiology Ecology,2003,6:233-246.
    [24] SUN M Y,DAFFORN K A,BROWN M V,et al.Bacterial communities are sensitive indicators of contaminant stress.Marine Pollution Bulletin,2012,4(5):1029-1038.
    [25] BIDDANDA B,OGDAHL M,COTNER J.Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters.Limnology and Oceanography,2001,6(3):730-739.
    [26] PINHASSI J,SALA M M,HAVSKUM H,et al.Changes in bacterioplankton composition under different phytoplankton regimes.Applied and Environmental Microbiology,2004,0(11):6753-6766.
    [27] SUTTLE C A.The significance of viruses to mortality in aquatic microbial communities.Microbial Ecology,1994,8(2):237-243.
    [28] LEBARON P,SERVAIS P,TROUSSELLIER M,et al.Microbial community dynamics in Mediterrannean nutrient-enriched seawater mesocosms:changes in abundances,activity and composition.FEMS Microbiology Ecology,2001,4(3):255-266.
    [29] CARREIRO-SILVA M,KIENE W E,GOLUBIC S,et al.Phosphorus and nitrogen effects on microbial euendolithic communities and their bioerosion rates.Marine Pollution Bulletin,2012,4(3):602-613.
    [30] HU Anyi,YANG Xiaoyong,CHEN Nengwang,et al.Response of bacterial communities to environmental changes in a mesoscale subtropical watershed,southeast China.Science of the Total Environment,2014,2:746-756.
    [31] 周玉航,潘建明,叶瑛,等.细菌、病毒与浮游植物相互关系及其对海洋地球化学循环的作用.台湾海峡,2001,0(3):340-345.ZHOU Yuhang,PAN Jianming,YE Ying,et al.Relationship between bacterium,virus and phytoplankton and their effects to geochemical cycling in ocean.Journal of Oceanography in Taiwan Strait,2001,0(3):340-345.
    [32] DUCKLOW H W.Factors regulating bottom-up control of bacterial biomass in open ocean plankton communities.Archiv fur Hydrobiologie Beih,1992,7:207-217.
    [33] JENNIFER C,JAMES A E,ELLEN T M.Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters.Marine Ecology Progress Series,1996,9:267-279.
    [34] KIRCHMAN D L,KEIL G K,SIMON M.Biomass and production of heterotrophic bacterioplankton in the oceanic subartic Pacific.Deep-Sea Research,1993,0:967-988.
    [35] SHIAH F K,DUCKLOW H W.Temperature regulation of heterotrophic bacterioplankton abundance,production and specific growth rate in Chesapeake Bay.Limnology and Oceanography,1994,9:1243-1258.
  • 加载中
计量
  • 文章访问数:  2467
  • HTML全文浏览量:  7
  • PDF下载量:  1800
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-06-25

目录

    /

    返回文章
    返回