留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用大型土柱自然淋溶条件下研究土壤重金属的迁移及形态转化

上官宇先 秦晓鹏 赵冬安 赵 龙 王林权 侯 红 李发生

上官宇先, 秦晓鹏, 赵冬安, 赵 龙, 王林权, 侯 红, 李发生. 利用大型土柱自然淋溶条件下研究土壤重金属的迁移及形态转化[J]. 环境科学研究, 2015, 28(7): 1015-1024.
引用本文: 上官宇先, 秦晓鹏, 赵冬安, 赵 龙, 王林权, 侯 红, 李发生. 利用大型土柱自然淋溶条件下研究土壤重金属的迁移及形态转化[J]. 环境科学研究, 2015, 28(7): 1015-1024.
SHANGGUAN Yuxian, QIN Xiaopeng, ZHAO Dong an, ZHAO Long, WANG Linquan, HOU Hong, LI Fasheng. Migration and Transformation of Heavy Metals in Soils by Lysimeter Study with Field Condition[J]. Research of Environmental Sciences, 2015, 28(7): 1015-1024.
Citation: SHANGGUAN Yuxian, QIN Xiaopeng, ZHAO Dong an, ZHAO Long, WANG Linquan, HOU Hong, LI Fasheng. Migration and Transformation of Heavy Metals in Soils by Lysimeter Study with Field Condition[J]. Research of Environmental Sciences, 2015, 28(7): 1015-1024.

利用大型土柱自然淋溶条件下研究土壤重金属的迁移及形态转化

基金项目: 国家自然科学基金项目(41271338);国家重大科学仪器设备开发项目(2011YQ14014908)

Migration and Transformation of Heavy Metals in Soils by Lysimeter Study with Field Condition

  • 摘要: 为研究不同重金属在土壤中的迁移和形态转化,通过分层填装土柱,在土柱0~5 cm深度范围内添加Pb、Ag、Bi、In、Sb和Sn等重金属污染土壤,并在自然条件下淋溶4 a,分析各重金属在红壤、潮土、黑土和砂土中的迁移速率及其形态组成. 结果表明:①在>30 cm深度范围内,红壤、潮土和黑土中各重金属质量分数与其相应本底值相比变化不大;与试验前土壤相比,砂土整个剖面中6种重金属质量分数均较高. ②6种重金属在4种土壤中的残留率表现为砂土<潮土<黑土<红壤;对于0~10 cm土壤中Pb的残留率,在潮土中大于Ag和Sb,在黑土中大于Ag,在红壤中大于In,在砂土中则大于Sn. ③模拟试验后残留在土柱中的重金属主要分布在土壤表层(0~30 cm),而深层(>30 cm)较少;6种重金属在红壤、潮土、黑土和砂土中的残留率平均值分别为98.0%、65.1%、65.9%和56.5%. ④与添加污染土壤之前相比,试验后土壤中残渣态等稳定形态重金属质量分数较低,其中Pb、In和Sb均以碳酸盐结合态和有机金属络合态为主,Ag和Sn分别以有机金属络合态、双氧水可提取有机结合态和有机金属络合态、无定形铁锰氧化物结合态为主,而Bi则以碳酸盐结合态和双氧水可提取有机结合态为主. 结果显示,红壤中Pb的迁移风险较低,潮土和黑土中Ag、Sb的迁移风险较高,而砂土中Sn和Sb的迁移风险需要格外关注.

     

  • [1] 程新伟.土壤铅污染研究进展.地下水,2011,3(1):65-68.CHENG Xinwei.Research progress of lead pollution on soils.Ground Water,2011,3(1):65-68.
    [2] 黄冠星,孙继朝,汪珊,等.珠江三角洲平原典型区地下水中铅的污染特征.环境化学,2008,7(4):533-534.HUANG Gaunxing,SUN Jichao,WANG Shan,et al.Pollution characteristics of lead in groundwater in the typical area of the Pearl River Delta plain.Environmental Chemistry,2008,7(4):533-534.
    [3] CAO X,MA L Q,CHEN M,et al.Lead transformation and distribution in the soils of shooting ranges in Florida,USA.The Science of the Total Environment,2003,7(1/2/3):179-189.
    [4] JAMSHID L,MANZOO R,HOSSEIN A Z.Ultra-trace determination of silver in water samples by electro thermal atomic absorption spectrometry after preconcentration with a ligand-less cloud point extraction methodology.Journal of Hazardous Materials,2007,4(1/2):458-463.
    [5] 张辉,朱立群.用于锌银蓄电池氧化银电极的研究进展.稀有金属材料与工程,2008,7(6):1124-1128.ZHANG Hui,ZHU Liqun.Developments of silver oxide electrode in silver-zinc storage batteries.Rare Metal Materials and Engineering,2008,7(6):1124-1128.
    [6] LIANG Y,BRADFORD S A,SIMUNEK J,et al.Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil.Environmental Science & Technology,2013,7(21):12229-12237.
    [7] MURATA T.Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter.Journal of Environmental Science and Health Part A,2010,5(6):746-753.
    [8] ZHANG H,LI L,ZHOU S.Kinetic modeling of antimony (Ⅴ) adsorption-desorption and transport in soils.Chemosphere,2014,1:434-440.
    [9] MARTIN W A,LEE L S,SCHWAB P.Antimony migration trends from a small arms firing range compared to lead,copper,and zinc.The Science of the Total Environment,2013,3/464:222-228.
    [10] OKKENHAUG G,AMSTATTER K,LASSEN B H,et al.Antimony (Sb) contaminated shooting range soil:Sb mobility and immobilization by soil amendments.Environmental Science & Technology,2013,7(12):6431-6439.
    [11] HOU H,TAKAMATSU T M,KOSHIKAWA K M.Migration of silver,indium,tin,antimony and bismuth,and variations in their chemical speciation on addition to uncontaminated soils.Soil Science,2005,0(8):624-639.
    [12] CITEAU L,LAMY I,ELSASS F.Colloidal facilitated transfer of metals in soils under different land use.Colloids Surface A:Physicochemical and Engineering Aspects,2003,7(1/2):11-19.
    [13] KUMPIENE J,LAGERKVIST A,MAURICE C.Stabilization of Pb-and Cu-contaminated soil using coal fly ash and peat.Environmental Pollution,2007,5(1):365-373.
    [14] 郭莹莹,黄泽春,王琪,等.电子废物酸浴处置区附近农田土壤重金属污染特征.环境科学研究,2011,4(5):580-586.GUO Yingying,HUANG Zechun,WANG Qi,et al.Pollution characteristics of heavy metals in agricultural soils near an e-waste acid washing treatment site.Research of Environmental Sciences,2014,4(5):53-54.
    [15] TAKAMATSUT,KOSHIKAWA M K,WATANABE M,et al.Design of a meso-scale indoor lysimeter for undisturbed soil to investigate the behavior of solutes in soil.European Journal of Soil Science,2007,8(1):329-334.
    [16] HOU H,YAO N,LI J N,et al.Migration and leaching risk of extraneous antimony in three representative soils of China:lysimeter and batch experiments.Chemosphere,2013,3(9):1980-1988.
    [17] 鲍士旦.土壤农化分析.北京:中国农业出版社,2008:25-200.
    [18] HOU H,TAKAMATSU T,KOSHIKAWA K M.Concentrations of Ag,In,Sn,Bi,Sb,and their chemical fractionation in typical soils in Japan.European Journal of Soil Science,2006,2(57):214-227.
    [19] TYLER G,OLSSON T.Concentrations of 60 elements in the soil solution as related to the soil acidity.European Journal of Soil Science,2001,2(1):151-165.
    [20] CABRERA C,LOPEZ M C,GALLEGO C,et al.Lead contamination levels in potable,irrigation and waste waters from an industrial area in southern Spain.Science of the Total Environment,1995,9(1):17-21.
    [21] FAN J X,WANG Y J,CUI X D,et al.Sorption isotherms and kinetics of Sb(V) on several Chinese soils with different physicochemical properties.Journal of Soils and Sediments,2013,3(2):344-353.
    [22] 严明书,李武斌,杨乐超,等.重庆渝北地区土壤重金属形态特征及其有效性评价.环境科学研究,2014,7(1):64-70.YAN Mingshu,LI Wubin,YANG Lechao,et al.Speciation characteristics and effectiveness assessment of heavy metals in soils in Yubei District,Chongqing.Research of Environmental Sciences,2014,7(1):64-70.
    [23] LAMY I,VAN OORT F,DERE C,et al.Use of major-and trace-element correlations to assess metal migration in sandy Luvisols irrigated with wastewater.European Journal of Soil Science,2006,7(5):731-740.
    [24] TIGHE M,LOCKWOOD P V,ASHLEY P M,et al.The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system.The Science of the Total Environment,2013,3/464:151-160.
    [25] MASSOUDIEH A,GINN T R.Modelling of pollutants in complex environmental systems colloid-facilitated contaminant transport in unsaturated porous media.Glensdale:ILM Publications,2010:263-283.
    [26] TIGHE M,LOCKWOOD P,WILSON S.Adsorption of antimony(Ⅴ) by floodplain soils,amorphous iron(Ⅲ) hydroxide and humicacid.Journal of Environmental Monitoring,2005,7(12):1177-1185.
    [27] WILSON S C,LOCKWOOD P V,ASHLEY P M,et al.The chemistry and behavior of antimony in the soil environment with comparisons to arsenic:a critical review.Environmental Pollution,2010,8(5):1169-1181.
    [28] HUANG Y,CHEN Z,LIU W.Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(Ⅲ) or Sb(Ⅴ).Plant Soil,2012,2(1/2):41-49.
    [29] 卢扬.外源银在土壤中形态变化及银在水稻体中分布规律的研究.重庆:西南大学,2006.
    [30] NORMAN N C.Chemistry of arsenic,antimony and bismuth.London:Springer,1998:41-43.
  • 加载中
计量
  • 文章访问数:  3101
  • HTML全文浏览量:  29
  • PDF下载量:  1944
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-07-25

目录

    /

    返回文章
    返回