留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嗜酸氧化亚铁硫杆菌对龙门挂架表面铜的浸出效果

费彦肖 白建峰 邓明强 张承龙 王鹏程 祝学超 王景伟

费彦肖, 白建峰, 邓明强, 张承龙, 王鹏程, 祝学超, 王景伟. 嗜酸氧化亚铁硫杆菌对龙门挂架表面铜的浸出效果[J]. 环境科学研究, 2015, 28(8): 1267-1273.
引用本文: 费彦肖, 白建峰, 邓明强, 张承龙, 王鹏程, 祝学超, 王景伟. 嗜酸氧化亚铁硫杆菌对龙门挂架表面铜的浸出效果[J]. 环境科学研究, 2015, 28(8): 1267-1273.
FEI Yanxiao, BAI Jianfeng, DENG Mingqiang, ZHANG Chenglong, WANG Pengcheng, ZHU Xuechao, WANG Jingwei. Bioleaching Copper from a Gantry by Acidithiobacillus ferrooxidans[J]. Research of Environmental Sciences, 2015, 28(8): 1267-1273.
Citation: FEI Yanxiao, BAI Jianfeng, DENG Mingqiang, ZHANG Chenglong, WANG Pengcheng, ZHU Xuechao, WANG Jingwei. Bioleaching Copper from a Gantry by Acidithiobacillus ferrooxidans[J]. Research of Environmental Sciences, 2015, 28(8): 1267-1273.

嗜酸氧化亚铁硫杆菌对龙门挂架表面铜的浸出效果

基金项目: 国家自然科学基金项目(21307080);上海第二工业大学重点学科建设项目(XXKYS1404);上海张江重点项目(201310PDJQB2006)

Bioleaching Copper from a Gantry by Acidithiobacillus ferrooxidans

  • 摘要: 龙门挂架(下称挂架)是线路板生产过程必用的固定支架,生产线路板时挂架表面会附着大量铜,使得挂架需经酸法处理后才能回用,造成大量废液和恶劣的工作环境. 为此,采用环境友好的微生物技术回收挂架表面的Cu,分析了A.f菌(Acidithiobacillus ferrooxidans,嗜酸氧化亚铁硫杆菌)脱除挂架表面Cu的效果及9K培养基不同配比(以w计,分别为100%、50%、25%)的影响,并初步解析其浸出过程. 结果表明:①添加100%的9K培养基时,A.f菌浸出挂架及其配件的溶液中ρ(Cu2+)均最高,分别达2.31和1.06 g/L,挂架及其配件表面Cu均已脱除. ②结合浸出液中ρ(Cu2+)、ρ(Fe2+)和pH随时间的变化及三者之间的相互影响关系可知,浸铜过程为A.f菌先将溶液中的Fe2+氧化为Fe3+,Fe3+再将挂架表面的Cu氧化为Cu2+. ③利用一级动力学和二级动力学模型,对3种配比培养基下配件浸出液中的ρ(Cu2+)进行曲线拟合,二级动力学模型的R2(相关系数)分别为0.888 4、0.900 8、0.844 4,均高于一级动力学的R2,表明二级动力学模型更适用于Cu的浸取行为. 该生物浸出方法有望在线路板行业中进行应用.

     

  • [1] 项赟.废旧线路板有价金属生物回收技术研究.广州:华南理工大学,2011:1-17.
    [2] WANG Jingwei,XU Jinqiu.Environmental implications of PCB manufacturing in China.New York:Electronics and the Environmental,2004:156-158.
    [3] JIN Li,HONG Zhoulu,JIE Guo,et al.Recycle technology for recovering resources and products from waste printed circuit boards.Environmental Science & Technology,2007,1(6):1995-2000.
    [4] WILLIANM J,HALL P T.Separation and recovery of materials from scrap printed circuit boards.Resources Conservation and Recycling,2007,1(3):691-709.
    [5] 徐敏.废弃印刷线路板的资源化回收技术研究.上海:同济大学,2008:1-30.
    [6] 吴思芬.利用微生物代谢产物浸取废弃印刷线路板中铜的研究.上海:东华大学,2008:1-22.
    [7] 佚名.2010年我国多层电路板产量将提升15%.印制电路资讯,2010,5(3):36-37.
    [8] ROHWEDER T,GEHRKE T,KINZLER K,et al.Bioleaching review:Part A.progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation.Applied Microbiology and Biotechnology,2003,3(3):239-248.
    [9] OLSON G J,BRIERLEY J A,BRIERLEY C L.Progress in bioleaching:applications of microbial processes by the minerals industries Bioleaching review part B.Applied Microbiology and Biotechnology,2003,3(3):249-257.
    [10] 杨远坤.氧化亚铁硫杆菌浸提废旧印刷线路板铜的研究.绵阳:西南科技大学,2014:4-10.
    [11] 王鹏程,白静,赵新,等.基于微生物法回收PCB中金属的研究进展.环境技术,2013(5):25-29.WANG Pengcheng,BAI Jing,ZHAO Xin,et al.The research progress of recycling metal from the printed circuit boards by microbiological method.Environmental Technology,2013(5):25-29.
    [12] 杨远坤,谌书,陈梦君.氧化亚铁硫杆菌浸提废旧线路板铜的浸出率与时间的关系.环境工程学报,2013,7(6):2322-2326.YANG Yuankun,CHEN Shu,CHEN Mengjun.Relationship between leaching time and copper recovery from waste printed circuit boards by Thiobacillus ferrooxidan.Chinese Journal of Environmental Engineering,2013,7(6):2322-2326.
    [13] 聂红燕,朱能武,杨婷婷,等.嗜酸性细菌对废旧线路板浸出的吸附行为及动力学[J/OL].北京:环境科学学报,2014[2014-09-12].http://www.cnki.net/kcms/doi/10.13671/j.hjkxxb.2014.0913.html.NIE Hongyan,ZHU Nengwu,YANG Tingting,et al.Adsorption behavior and kinetics of acidophilic bacteria on the leaching of waste printed circuit boards[J/OL].Beijing:Journal of Environmental Science,2014[2014-09-12].http://www.cnki.net/kcms/doi/10.13671/j.hjkxxb.2014.0913.html.
    [14] 周培国,郑正,彭晓成,等.氧化亚铁硫杆菌浸出线路板中铜及过程中铁的变化研究.环境污染与防治,2007,9(2):119-122.ZHOU Peiguo,ZHENG Zheng,PENG Xiaocheng,et al.Leaching of copper from printed circuit board by Thiobacillus ferrooxidans.Environmental Pollution and Control,2007,9(2):119-122.
    [15] 白建峰,顾卫华,张承龙,等.嗜酸氧化亚铁硫杆菌研究及在电子废物中应用进展.安全与环境学报,2014,4(4):181-185.BAI Jianfeng,GU Weihua,ZHANG Chenglong,et al.Study on Acidithiobacillus ferrooxidans and its application progress in treating electronic wastes.Journal of Safety and Environment,2014,4(4):181-185.
    [16] 周顺桂,周立祥,王世梅.嗜酸硫氧化菌株的分离及其在污泥生物脱毒中的应用.环境科学研究,2003,6(5):41-51.ZHOU Shungui,ZHOU Lixiang,WANG Shimei.Isolation of an acidophilic sulfur-oxidizing strain SS-3 and its application on heavy metal bioleaching from sewage sludge.Research of Environmental Sciences,2003,6(5):41-51.
    [17] YANG Yuankun,CHEN Shu,LI Shicheng,et al.Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect.Journal of Biotechnology,2014,3:24-30.
    [18] XIANG Yun,WU Pingxiao,ZHU Nengwu,et al.Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage.Journal of Hazardous Materials,2010,4(1):812-818.
    [19] 廖广丹,谌书,苏涛,等.溴代阻燃剂对氧化亚铁硫杆菌浸提废旧电脑主板覆层铜的影响.环境科学研究,2014,7(11):1272-1277.LIAO Guangdan,CHEN Shu,SU Tao,et al.Study on the influence of brominated flame retardants on the bioleaching of copper from waste computer motherboards.Research of Environmental Sciences,2014,7(11):1272-1277.
    [20] 周培国,郑正,彭晓成,等.氧化亚铁硫杆菌浸出线路板中Cu的作用方式研究.环境污染与防治,2009,1(10):57-60.ZHOU Peiguo,ZHENG Zheng,PENG Xiaocheng,et al.Mechanism of leaching of copper from printed circuit board by Thiobacillus ferrooxidans.Environmental Pollution and Control,2009,1(10):57-60.
    [21] 杨涛,徐政,温健康,等.氧化亚铁硫杆菌浸出废弃线路板中铜的研究.环境工程学报,2009,3(5):915-918.YANG Tao,XU Zheng,WEN Jiankang,et al.Bioleaching of copper from printed circuit boards of waste computer by Thiobacillus ferrooxidans.Chinese Journal of Environmenal Engineering,2009,3(5):915-918.
    [22] CORDOBA E M,MUNOZ J A,BLAZQUEZ M L,et al.Leaching of chalcopyrite with ferric ion:Part Ⅰ.general aspects.Hydrometallurgy,2008,3(3):81-87.
    [23] WANG Jun,ZHU Shan,ZHANG Yansheng,et al.Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.Journal of Central South University,2014,1(2):728-734.
    [24] 高顺枝,罗兴章,聂耳,等.氧化亚铁硫杆菌浸铜作用研究.环境工程学报,2010,4(3):676-682.GAO Shunzhi,LUO Xingzhang,NI Er,et al.Role of Acidithiobacillus ferrooxidans in bioleaching of copper.Chinese Journal of Environmental Engineering,2010,4(3):676-682.
    [25] JIANG H,LAWSON F.Reaction mechanism for the formation of ammonium jarosite.Hydro Metallurgy,2006,2(4):195-198.
    [26] DING Jiannan,GAO Jian,WU Xueling,et al.Jarosite-type precipitates mediated by YN22,Sulfobacillus thermosulfidooxidans and their influences on strain.Transactions of Nonferrous Metals Society of China,2007,7(5):1038-1044.
    [27] NAZARI B,JORJANI E,HANI H,et al.Formation of jarosite and its effect on important ions for Acidithiobacillus ferrooxidans bacteria.Transactions of Nonferrous Metals Society of China,2014(24):1152-1160.
    [28] SASAKI K,NAKAMUTA Y,HIRAJIMA T,et al.Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus fellrooxidans.Hydrometallurgy,2009,5(2):153-158.
    [29] 张婷.嗜酸性细菌浸出废旧线路板中有价金属的微生物学基础研究.广州:华南理工大学,2012:21-41.
    [30] STOICA P,SELEN Y.Model-order selection:a review of information criterion rules.Signal Processing Magazine,IEEE,2004,1(4):36-47.
    [31] HO Y S.Review of second-order models for adsorption systems.Journal of Hazardous Materials,2006,6(3):681-689.
  • 加载中
计量
  • 文章访问数:  1806
  • HTML全文浏览量:  24
  • PDF下载量:  1920
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-08-25

目录

    /

    返回文章
    返回