留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

XAD-2树脂表征焦化厂土壤中高环PAHs的生物可给性

钟茂生 姜登登 王 颖 姜 林 夏天翔 韩 丹

钟茂生, 姜登登, 王 颖, 姜 林, 夏天翔, 韩 丹. XAD-2树脂表征焦化厂土壤中高环PAHs的生物可给性[J]. 环境科学研究, 2015, 28(11): 1702-1710.
引用本文: 钟茂生, 姜登登, 王 颖, 姜 林, 夏天翔, 韩 丹. XAD-2树脂表征焦化厂土壤中高环PAHs的生物可给性[J]. 环境科学研究, 2015, 28(11): 1702-1710.
ZHONG Maosheng, JIANG Dengdeng, WANG Ying, JIANG Lin, XIA Tianxiang, HAN Dan. Assessing the Bioaccessibility of High Molecular Weight PAHs in Soils from a Coking Plant Using XAD-2 Assisted Desorption Method[J]. Research of Environmental Sciences, 2015, 28(11): 1702-1710.
Citation: ZHONG Maosheng, JIANG Dengdeng, WANG Ying, JIANG Lin, XIA Tianxiang, HAN Dan. Assessing the Bioaccessibility of High Molecular Weight PAHs in Soils from a Coking Plant Using XAD-2 Assisted Desorption Method[J]. Research of Environmental Sciences, 2015, 28(11): 1702-1710.

XAD-2树脂表征焦化厂土壤中高环PAHs的生物可给性

基金项目: 国家环境保护公益性行业科研专项(201409047);北京市科学技术委员会重大项目(D08040000360000)

Assessing the Bioaccessibility of High Molecular Weight PAHs in Soils from a Coking Plant Using XAD-2 Assisted Desorption Method

  • 摘要: 利用Amberlite XAD-2树脂辅助解吸技术表征某焦化厂土样中高环PAHs的解吸特征及其生物可给性,分析风险评估过程中考虑污染物生物可给性的可行性;采用傅里叶红外光谱法测试解吸前、后土样的红外光谱特征,判断不同土壤有机官能团对PAHs的吸附强弱. 结果表明:土样中PAHs前30 d的解吸速率明显大于后60 d(前者的解吸速率比后者高2~3个数量级),60 d后污染物解吸基本已达到平衡,整个过程符合两阶段解吸模型. 渗漏污染途径下土样中高环PAHs的生物可给性为0.18~0.47,低于大气沉降污染途径下表层土样中对应PAHs的生物可给性(1.00),表明在开展场地健康风险评估过程中,应考虑具体场地土壤中PAHs的生物可给性,以在一定程度上降低评估结果的保守性. 解吸前、后土样红外光谱特征整体无明显变化,解吸过程不改变土壤主要有机官能团类型,但解吸后土壤中羟基和羧基的峰强明显减弱,吸附于羟基及羧基上的PAHs可能更易解吸.

     

  • [1] ZHANG Yanxu,TAO Shu,SHEN Huizhong,et al.Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population.Proceedings of National Academy of Sciences of the United States of America,2009,6(50):21063-21067.
    [2] STEPHEN D R,MICHAEL D A.Desorption and bioavailability of polycyclic aromatic hydrocarbons in contaminated soil subjected to long-term in suit biostimulation.Environmental Toxicology and Chemistry,2011,0(12):2674-2681.
    [3] BARTHJA C,STEIDLE D,KUNTZ D,et al.Deposition,persistence and turnover of pollutants:first results from the EU project Aqua Terra for selected river basins and aquifers.Science of the Total Environment,2007,6(1/2/3):40-50.
    [4] ZHANG Yanxu,DOU Han,CHANG Biao.Emission of polycyclic aromatic hydrocarbons (PAHs) from indoor straw burning and emission inventory updating in China.Annals of New York Academy of Sciences,2008,0(10):218-227.
    [5] ALEXANDER M.Aging,bioavailability,and overestimation of risk from environmental pollutants.Environmental Science & Technology,2000,4(20):4259-4265.
    [6] SCHWARZENBACH R P,GSCHWEND P M,IMBODEN D M.Environmental organic chemistry.New York:John Wiley & Sons,1993.
    [7] PINGATELLO J J,XING Baoshan.Mechanisms of slow sorption of organic chemicals to natural particles.Environmental Science & Technology,1996,0(1):1-11.
    [8] SEMPLE K T,DOICK K J,JONES K C,et al.Peer reviewed:defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated.Environmental Science & Technology,2004,8(12):228-231.
    [9] LOEH R C.The environmental impact of soil contamination:bioavailability,risk assessment,and policy implications.Los Angeles,CA:Reason Foundation,1996:1-21.
    [10] SEMPLE K T,MORRISS A W J,PATON G I.Bioavailability of hydrophobic organic contaminants in soils:fundamental concepts and techniques for analysis.European Journal of Soil Science,2003,4(4):809-818.
    [11] KRAAIJ R,MAYER P,BUSSER F J,et al.Measured pore-water concentrations make equilibrium partitioning work:a data analysis.Environmental Science & Technology,2003,7(2):268-274.
    [12] PATTERSON C J,SEMPLE K T,PATON G I.Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralization in soil.FEMS Microbiology Letter,2014,1(2):215-220.
    [13] LI Lei,MAKRAM T S,AMID P K,et al.Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption.Environmental Science & Technology,2004,8(6):1786-1793.
    [14] 鲁如坤.土壤农业化学分析方法.北京:中国农业出版社,1999.
    [15] Unite State Environmental Protection Agency (US EPA).Semi-volatile organic compounds by gas chromatography/mass spectrometry (GC/MS).Washington DC:US EPA,2007.
    [16] 钟茂生,姜林,夏天翔,等.基于土壤中多环芳烃解吸特性的生物修复效果评.基于土壤中多环芳烃解吸特性的生物修复效果评价.环境科学学报,2012,2(3):726-730.ZHONG Maosheng,JIANG Lin,XIA Tianxiang,et al.Evaluation of effectiveness of bioremediation based on PAHs desorption characteristics in soil.Acta Scientiae Circumstantiae,2012,2(3):726-730.
    [17] HUANG Qing,LI Fasheng,XIAO Ru,et al.Characterization of organo-mineral aggregates of chernozem in northeast China and their adsorption behavior to phenanthrene.Soil Science Society of America Journal,2008,2(2):362-269.
    [18] ANTON P,JONKER M T O,FRITS G,et al.Explaining PAH desorption from sediments using Rock Eval analysis.Environmental Pollution,2014,3:247-253.
    [19] PENG Chi,CHEN Weiping,LIAO Xiaolan,et al.Polycyclic aromatic hydrocarbons in urban soils of Beijing:status,sources,distribution and potential risk.Environmental Pollution,2011,9(3):802-808.
    [20] 侯艳伟,张又驰.福建某钢铁厂区域表层土壤PAHs污染特征与风险分析.环境化学,2010,1(10):1542-1549.HOU Yanwei,ZHANG Youchi.Assessment on contamination and risk of PAHs in soils in area of steel works in Fujian Province.Environmental Chemistry,2010,1(10):1542-1549.
    [21] 王超,张霖琳,刀谞,等.京津冀地区城市空气颗粒物中多环芳烃的污染特征及来源.中国环境科学,2015,5(1):1-6.WANG Chao,ZHANG Linlin,DAO Xu,et al.Pollution characteristics and source identification of polycyclic aromatic hydrocarbons in airborne particulates of Beijing-Tianjin-Hebei Region,China.China Environmental Science,2015,5(1):1-6.
    [22] 李恩科,程相利,苍大强,等.炼焦过程中多环芳烃产生特性的研究.现代化工,2010,0(1):74-77.LI Enke,CHENG Xiangli,CANG Daqiang,et al.Study of generation characteristic of polycyclic aromatic hydrocarbons in coking process.Modern Chemical Industry,2010,0(1):74-77.
    [23] 牟玲,彭林,刘效峰,等.机械炼焦过程生成飞灰中多环芳烃分布特征研究.环境科学,2013,4(3):1156-1161.MU Ling,PENG Lin,LIU Xiaofeng,et al.Characterization of PAHs in fly ashes from coke production.Environmental Science,34(3):1156-1161.
    [24] EEVON L,SUYIN G,HOON K N.Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface soils from five different locations in Klang Valley,Malaysia.Bulletin Environmental Contamination Toxicology,2012,8(5):741-746.
    [25] 吕正勇,杨兴伦,王芳,等.Tenax提取预测老化土壤中多环芳烃的生物有效性.中国环境科学,2011,1(4):647-656.LU Zhengyong,YANG Xinglun,WANG Fang,et al.The tenax extraction technique to predict the bioavailability of aged PAHs in soil.China Environmental Science,2011,1(4):647-656.
    [26] HUANG Weilin,THOMAS M Y,MARK A S,et al.A distributed reactivity model for sorption by soils and sediments 9.general isotherm nonlinearity and applicability of the dual reactive domain model.Environmental Science & Technology,1997,1(6):1703-1710.
    [27] PIGNATELLO J J,XING Baoshan.Mechanisms of slow sorption of organic chemicals to natural particles.Environmental Science & Technology,1996,0(1):1-11.
    [28] GHOSH U,HAWTHORNE S B.Particle-scale measurement of PAH aqueous equilibrium partitioning in impacted sediments.Environmental Science & Technology,2010,4(4):1204-1210.
    [29] BARNIER C,OUVRARD S,ROBIN C,et al.Desorption kinetics of PAHs from aged industrial soils for availability assessment.Science of the Total Environment,2014,0/471(2):639-645.
    [30] PAUL C M,GERARD C,TEMODORA E M H,et al.Slow and very slow desorption of organic compounds from sediment:influence of sorbate planarity.Water Research,2003,7(10):2317-2322.
    [31] AGNIESZKA E L,ANNIKA L S,BRIAN J R.Environmentally friendly assessment of organic compound bioaccessibility using sub-critical water.Environmental Pollution,2008,6(2):467-473.
    [32] SCHWAB K,BRACK W.Large volume TENAX extraction of the bioaccessible fraction of sediment-associated organic compounds for a subsequent effect-directed analysis.Journal of Soils and Sediments,2007,7(3):178-186.
    [33] REEVES W R,MCDONALD T J,CIZMAS L,et al.Partitioning and desorption behavior of polycyclic aromatic hydrocarbons from disparate sources.Science of the Total Environment,2004,2(1/2/3):183-192.
    [34] GOMEZ L C,ORTEGA CALVO J J.Effect of slow desorption on the kinetics of biodegradation of polycyclic aromatic hydrocarbons.Environmental Science & Technology,2005,9(22):8776-8783.
    [35] YASSAR H E,NICOLE M D,JANET S H,et al.Mobilization and transport of soil particles during infiltration experiments in an agricultural field,Shenandoah Valley,Virginia.Environmental Science & Technology,2000,4(17):3555-3559.
    [36] GROLIMUND D,BORKOVEC M,BARMETTLER K,et al.Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:a laboratory column study.Environmental Science & Technology,1996,0(10):3118-3123.
    [37] 樊晓燕,温天雪,徐仲均,等.北京大气颗粒物碳质组分粒径分布的季节变化特征北京大气颗粒物碳质组分粒径分布的季节变化特征.环境化学,2013,2(5):742-747.FAN Xiaoyan,WEN Tianxue,XU Zhongjun,et al.Characteristics and size distributions of organic and element carbon of atmospheric particulate matters in Beijing,China.Environmental Chemistry,2013,2(5):742-747.
    [38] GUO Xueyan,LUO Lei,MA Yibing,et al.Sorption of polycyclic aromatic hydrocarbons on particulate organic matters.Journal of Hazardous Material,2010,3(1/2/3):130-136.
    [39] MAGDALENA B,BOENA D,EWA R.Effect of soil pollution with polycyclic aromatic hydrocarbons on the properties of humic acids.Journal of Soils and Sediments,2014,4(6):1169-1178.
  • 加载中
计量
  • 文章访问数:  2036
  • HTML全文浏览量:  27
  • PDF下载量:  1883
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-30
  • 修回日期:  2015-08-20
  • 刊出日期:  2015-11-25

目录

    /

    返回文章
    返回