留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性柠檬渣的结构特征及其对Cu2+的吸附性能

沈王庆 李小雪 黄佳

沈王庆, 李小雪, 黄佳. 改性柠檬渣的结构特征及其对Cu2+的吸附性能[J]. 环境科学研究, 2016, 29(1): 146-154.
引用本文: 沈王庆, 李小雪, 黄佳. 改性柠檬渣的结构特征及其对Cu2+的吸附性能[J]. 环境科学研究, 2016, 29(1): 146-154.
SHEN Wangqing, LI Xiaoxue, HUANG Jia. Structural Characteristics and Cu2+ Adsorption Properties of Modified Lemon Residues[J]. Research of Environmental Sciences, 2016, 29(1): 146-154.
Citation: SHEN Wangqing, LI Xiaoxue, HUANG Jia. Structural Characteristics and Cu2+ Adsorption Properties of Modified Lemon Residues[J]. Research of Environmental Sciences, 2016, 29(1): 146-154.

改性柠檬渣的结构特征及其对Cu2+的吸附性能

基金项目: 2013年四川省教育厅重点项目(13ZA0002)

Structural Characteristics and Cu2+ Adsorption Properties of Modified Lemon Residues

  • 摘要: 为研究柠檬渣对污水中Cu2+的吸附性能,利用H2SO4与NaOH对柠檬渣进行改性制备吸附剂,并采用响应曲面法对制备工艺进行了优化. 测试了吸附剂的比表面积、孔容与孔径等性能,并利用红外光谱(IR)、紫外光谱(UV)、差热分析(TG-DTA)、X射线衍射(XRD)、电镜(SEM)和能谱(EDS)对吸附剂进行了表征. 通过响应面法优化后的最佳改性条件:H2SO4改性后的炭化温度为80 ℃,NaOH改性后的炭化温度为90 ℃,w(NaOH)∶w(H2SO4)为0.3.改性后的柠檬渣较原柠檬渣比表面积由88.3 m2/g增至392.2 m2/g,灰分率降低了90.7%,碘吸附值提高了近5倍,孔径分布主要是中孔;柠檬渣属于无定型结构,改性后的柠檬渣有CC生成,形成了芳香烃,表面形成了密集的孔;改性后柠檬渣主要由碳元素组成,从而能有效吸附Cu2+,对Cu2+的吸附率能达到85.3%. 由红外分析可知,改性后的柠檬渣吸附Cu2+后3 804 cm-1处的吸收峰消失,说明Cu2+取代了这个吸收峰所代表的官能团及部分O—H中的H+.

     

  • [1] AWUALA M R,HASANB M M.Colorimetric detection and removal of copper(Ⅱ) ions from wastewater samples using tailor-made composite adsorbent.Sensors and Actuators B:Chemical,2015,6:692-700.
    [2] WENA Y Z,MAA J Q,CHENA J,et al.Carbonaceous sulfur-containing chitosan Fe(Ⅲ):a novel adsorbent for efficient removal of copper(Ⅱ) from water.Chemical Engineering Journal,2015,9:372-380.
    [3] AWUAL R,ELDESOKY G E,YAITA T,et al.Schiff based ligand containing nano-composite adsorbent f or optical copper(Ⅱ) ions removal from aqueous solutions.Chemical Engineering Journal,2015,9:639-647.
    [4] AWUAL R.A novel facial composite adsorbent for enhanced copper(Ⅱ) detection and removal from wastewater.Chemical Engineering Journal,2015,6:368-375.
    [5] TOFIGHY M A,MOHAMMADI T.Copper ions removal from water using functionalized carbon nanotubes:mullite composite as adsorbent.Materials Research Bulletin,2015,8:54-59.
    [6] ABEER A B.The use of eucalyptus leaves as adsorbent for copper ion removal.Desalination and Water Treatment,2014,2(40/41/42):7838-7844.
    [7] FENG Ningchuan,GUO Xueyi,LIANG Sha.Adsorption study of copper(Ⅱ) by chemically modified orange peel.Journal of Hazardous Materials,2009,4(1):1286-1292.
    [8] OZCAN A,OZCAN A S,TUNALI S,et al.Determination of the equilibrium,kinetic and thermodynamic parameters of adsorption of copper(Ⅱ) ions onto seeds of capsicum annuum.Journal of Hazardous Materials,2005,B124(1):200-208.
    [9] 张继义,梁丽萍,蒲丽君,等.小麦秸秆对Cr(Ⅵ)的吸附特性及动力学、热力学分析.环境科学研究,2010,3(12):1546-1552.ZHANG Jiyi,LIANG Liping,PU Lijun,et al.Adsorption characteristics of Cr(Ⅵ)by wheat straw including kinetic and thermodynamics analysis.Research of Environmental Sciences,2010,3(12):1546-1552.
    [10] PRASAD R,GHIMIRE K N,INOUE K.Adsorptive separationof heavy metals from an aquatic environment using orangewaste.Hydrometallurgy,2005,9(3/4):182-190.
    [11] GHIMIRE K N,INOUE K,YAIMAGUCHI H,et al.Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste.Water Research,2003,7(20):4945-4953.
    [12] LIANG Sha,GUO Xueyi,FENG Ningchuan,et al.Application of orange peel xanthate for the adsorption of Pb2+from aqueous solutions.Journal of Hazardous Materials,2009,0(1):425-429.
    [13] BROWNP P,JEFCOAT I A,PARRISH D,et al.Evaluation of the adsorptive capacity of peanut hull pellets forheavy metals in solution.Advanced Environmental Resources,2000,4(1):19-29.
    [14] JACOUEA R A,LIMAA E C,DIASS L P,et al.Yellow passion-fruit shell as biosorbent to remove Cr(Ⅲ) and Pb(Ⅱ) from aqueous solution.Separation and Purification Technology,2007,7(1):193-198.
    [15] IQBAL M,SAEED A,IQBAL Z S.Ftir spectrophotometry,kinetics and adsorption isotherms modeling,ion exchange,and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste.Journal of Hazardous Materials,2009,4(1):161-171.
    [16] FARINELLA N V,MATOS G D,ARRUDA M A Z.Grapebagasse as a potential biosorbent of metals in effluent treatments.Bioresource Technology,2007,8(10):1940-1946.
    [17] ANNADURAI A,JUANG R S,LEE D J.Adsorption of heavymetals from water using banana and orange peel.Water Science and Technology,2002,7(1):185-190.
    [18] DANG V B H,DOAB H D,DAND-VU T,et al.Equilibrium and kinetics of biosorption of cadmium(Ⅱ) and copper(Ⅱ) ions by wheat straw.Bioresource Technology,2009,0(1):211-219.
    [19] ROCHA C G,ZAIA D A,ALFAYAR V S,et al.Use of rice straw as bisorbents for removal of Cu(Ⅱ),Zn(Ⅱ) and Hg(Ⅱ) ions in industrial effluents.Journal of Hazardous Materials,2009,6(1):383-388.
    [20] ROBERT J C,ARKADIUSZ K,NICOLE L C,et al.Identification,synthesis,and characterization of novel sulfur-containing volatile compounds from the in-depth analysis of lisbon lemon peels (Citrus limon L.Burm.f.cv.Lisbon).Journal of Agricultural and Food Chemistry,2015,3:1915-1931.
    [21] ADAM J J,DAVID A,CHEN E F,et al.Lemon peel and Limoncello liqueur:a proteomic duet.Biochimica et Biophysica Acta,2013,4:1484-1491.
    [22] TEMBHURKAR A R,RADHIKA D.Powdered activated lemon peels as adsorbentfor removal of cutting oil from wastewater.Journal of Hazardous,Toxic,and Radio Active Waste,2012,6:311-315.
    [23] CATIA G L,FRANCESCA P,ALESSANDRO A C,et al.A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction.Separation and Purification Technology,2014,7(1):13-20.
    [24] MARA B A,ANTONIO L G.Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastespretreated with steam explosion .Industrial Crops and Products,2013,1(1):188-197.
    [25] NOELINE B F,MANOHAR D M,ANIRUDHAN T S.Kineticand equilibrium modelling of lead(Ⅱ) sorption from water and wastewater by polymerized banana stem in a batch reactor.Separation and Purification Technology,2005,5(2):131-140.
    [26] NOELINE B F,MANOHAR D M,ANIRUDHAN T S.Kinetic and equilibrium modelling of lead (Ⅱ) sorption from water and wastewater by polymerized banana stemin a batch reactor.Separation and Purification Technology,2005,5(1):131-140.
    [27] GABALLAH I,GOY D,ALLAIN E,et al.Recovery of copper through decontamination of synthetic solutions using modified barks.Metallurgical and Materials Transactions,1997,B28(1):13-23.
    [28] NAKAJIMA A,SAKAGUCHI T.Recovery and removal of uranium by using plant wastes.Biomass,1990,1(1):55-63.
    [29] 谢志刚.橘皮渣水处理剂的制备及其应用研究.重庆:重庆大学,2006:1-49.
    [30] 张千,吉芳英,徐璇.响应曲面法在反硝化生物滤池运行参数优化中的应用.环境科学研究,2015,8(7):1138-1144.ZHANG Qian,JI Fangying,XU Xuan.Optimization of denitrification biofilter process using response surface methodology .Research of Environmental Sciences,2015,8(7):1138-1144.
    [31] 金哲雄,王玥,周群,等.闹羊花与野菊花红外光谱(IR)的分析与鉴定.光谱学与光谱分析,2014,4(9):2434-2438.JIN Zhexiong,WANG Yue,ZHOU Qun,et al.The analyses and identification of flos rhododendri mollis and flos chrysanthemi indici via infrared spectroscopy.Spectroscopy and Spectral Analysis,2014,4(9):2434-2438.
    [32] 张永利,朱佳,史册,等.高岭土的改性及其对Cr(Ⅵ)的吸附特性.环境科学研究,2013,6(5):561-568.ZHANG Yongli,ZHU Jia,SHI Ce,et al.Modification of kaolin and its adsorption properties on Cr(Ⅵ).Research of Environmental Sciences,2013,6(5):561-568.
  • 加载中
计量
  • 文章访问数:  1942
  • HTML全文浏览量:  10
  • PDF下载量:  1526
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-25
  • 修回日期:  2015-10-05
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回