留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu循环催化羟胺与氧气反应降解甲基橙

周鹏 张静 张永丽 刘蓓 柯武 史雅楠

周鹏, 张静, 张永丽, 刘蓓, 柯武, 史雅楠. Cu循环催化羟胺与氧气反应降解甲基橙[J]. 环境科学研究, 2016, 29(4): 566-572.
引用本文: 周鹏, 张静, 张永丽, 刘蓓, 柯武, 史雅楠. Cu循环催化羟胺与氧气反应降解甲基橙[J]. 环境科学研究, 2016, 29(4): 566-572.
ZHOU Peng, ZHANG Jing, ZHANG Yongli, LIU Bei, KE Wu, SHI Ya'nan. Degradation of Methyl Orange in the Oxygen-Dependent Oxidation of Hydroxylamine Undergoing Copper-Redox Catalyzing Reactions[J]. Research of Environmental Sciences, 2016, 29(4): 566-572.
Citation: ZHOU Peng, ZHANG Jing, ZHANG Yongli, LIU Bei, KE Wu, SHI Ya'nan. Degradation of Methyl Orange in the Oxygen-Dependent Oxidation of Hydroxylamine Undergoing Copper-Redox Catalyzing Reactions[J]. Research of Environmental Sciences, 2016, 29(4): 566-572.

Cu循环催化羟胺与氧气反应降解甲基橙

基金项目: 国家自然科学基金项目(51508353)

Degradation of Methyl Orange in the Oxygen-Dependent Oxidation of Hydroxylamine Undergoing Copper-Redox Catalyzing Reactions

  • 摘要: 为研究Cu/O2/HA(HA为盐酸羟胺)体系的氧化能力,以MO(甲基橙)为目标物,对该体系生成·OH(羟基自由基)的过程及机理进行了探讨,并分别考察了HA投加量(以c计)、pH、Cu(Ⅱ)投加量(以c计)和O2通量对MO降解的影响. 结果表明:Cu能够有效催化HA与O2的反应,生成大量H2O2,并进一步生成·OH,有效降解MO. HA投加量越高,MO降解率越高,但过高的HA投加量在初始阶段会对MO的降解形成抑制,最佳HA投加量为3 mmol/L;受到HA质子化的影响,反应的最适pH约为5.5;由于Cu(OH)2不利于催化HA与O2的反应,最佳Cu(Ⅱ)投加量为20 μmol/L;O2通量对MO的降解影响较小,最佳O2通量为0.15 L/min;Cu/O2/HA体系降解MO的初始阶段符合一级动力学模型. 研究显示,Cu/O2/HA体系具有良好的氧化能力,能够有效降解水中的MO,最佳反应条件下MO降解率达86.5%.

     

  • [1] LIANG C,SU H W.Identification of sulfate and hydroxyl radicals in thermally activated persulfate.Industrial & Engineering Chemistry Research,2009,8:5558-5562.
    [2] QUIROZ A C,BARRERA-DAZ C,ROA-MORALES G,et al.Wastewater ozonation catalyzed by iron.Industrial & Engineering Chemistry Research,2011,0:2488-2494.
    [3] LIANG C,BRUELLl C J,MARLEY M C,et al.Persulfate oxidation for in situ remediation of TCE:Ⅰ.activated by ferrous ion with and without a persulfate-thiosulfate redox couple.Chemosphere,2004,5:1213-1223.
    [4] DENG Dayi,PENG Libin,GUAN Mengyun,et al.Impact of activation methods on persulfate oxidation of methyl tert-butyl ether.Journal of Hazardous Materials,2014,4:521-528.
    [5] ANIPSITAKIS G P,DIONYSIOU D D.Radical generation by the interaction of transition metals with common oxidants.Environment Science & Technology,2004,8:3705-3712.
    [6] MOFFETT J W,ZIKA R G.Reaction-kinetics of hydrogen-peroxide with copper and iron in seawater.Environmental Science & Technology,1987,1:804-810.
    [7] WOODS R,KOLTHOFF I M.Arsenic(Ⅳ) as an intermediate in the iron(Ⅲ) and copper(Ⅱ) catalyzed arsenic (Ⅲ)-persulfate reaction.Inorganic Chemistry,1965,4:697-704.
    [8] KOLTHOFF I M,WOODS R.Polarographic kinetic currents in mixtures of persulfate and copper (Ⅱ) in chloride medium.Journal of the American Chemical Society,1966,8:1371-1375.
    [9] LI Yunbo,KUPPUSAMY P,ZWEIER J L,et al.ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite,hydroquinone-role in DNA-damag.Chemico-Biological Interactions,1995,4:101-120.
    [10] LI Yunbo,TRUSH M A.Oxidation of hydroquinone by copper-chemical mechanism and biological effects.Archives of Biochemistry and Biophysics,1993,0:346-355.
    [11] YUAN Xiu,PHAM A N,MILLER C J.et al.Copper-catalyzed hydroquinone oxidation and associated redox cycling of copper under conditions typical of natural saline waters.Environmental Science & Technology,2013,7:8355-8364.
    [12] LIU Ran,GOODELLl B,JELLISON J,et al.Electrochemical study of 2,3-dihydroxyhenzoic acid and its interaction with Cu(Ⅱ) and H2O2 in aqueous solutions:implications for wood decay.Environmental Science & Technology,2005,9:175-180.
    [13] LI Yunbo,TRUSH M A.DNA-damage resulting from the oxidation of hydroquinone by copper-role for a Cu(Ⅱ)/Cu(Ⅰ) redox cycle and reactive oxygen generation.Carcinogenesis,1993,4:1303-1311.
    [14] KRISHNA M C,DEGRAFF W,HANKOVSZKY O H,et al.Studies of structure-activity relationship of nitroxide free radicals and their precursors as modifiers against oxidative damage.Journal of Medicinal Chemistry,1998,1:3477-3492.
    [15] ADAMS M,OVERMAN E.The reduction of copper sulphate with hydroxylamine.Journal of the American Chemical Society,1909,1:637-640.
    [16] CHOUDHARY V R,JANA P,BHARGAVA S K.Reduction of oxygen by hydroxylammonium salt or hydroxylamine over supported Au nanoparticles for in situ generation of hydrogen peroxide in aqueous or non-aqueous medium.Catalysis Communications,2007,8:811-816.
    [17] CHOUDHARY V R,JANA P.In situ generation of hydrogen peroxide from reaction of O2 with hydroxylamine from hydroxylammonium salt in neutral aqueous or non-aqueous medium using reusable Pd/Al2O3 catalyst.Catalysis Communications,2007,8:1578-1582.
    [18] YUAN Xiu,PHAM A N,XING Guowei,et al.Effects of pH,chloride,and bicarbonate on Cu(Ⅰ) oxidation kinetics at circumneutral pH.Environmental Science & Technology,2012,6:1527-1535.
    [19] PHAM A N,ROSE A L,WAITE T D.Kinetics of Cu(Ⅱ) reduction by natural organic matter.Journal of Physical Chemistry A,2012,6:6590-6599.
    [20] SHARMA V K,MILLERO F J.Oxidation of copper(Ⅰ) in seawater.Environmental Science & Technology,1988,2:768-771.
    [21] GONZALEZ-DAVILA M,SANTANA-CASIANO J M,GONZALEZ A G,et al.Oxidation of copper(Ⅰ) in seawater at nanomolar levels.Marine Chemistry,2009,5:118-124.
    [22] BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical review of rate constants for reactions of hydrated electrons chemical kinetic data base for combustion chemistry,hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution.Journal of Physical and Chemical Reference Data,1988,7:513.
    [23] CHEN Liwei,MA Jun,LI Xuchun,et al.Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.Environmental Science & Technology,2011,5:3925-3930.
    [24] ZOU Jing,MA Jun,CHEN Liwei,et al.Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(Ⅲ)/Fe(Ⅱ) cycle with hydroxylamine.Environmental Science & Technology,2013,7:11685-11691.
    [25] ROBINSON R,BOWER V.The ionization constant of hydroxylamine.Journal of Physical Chemistry,1961,5:1279-1280.
    [26] 姜成春,庞素艳,马军,等.钛盐光度法测定Fenton氧化中的过氧化氢.中国给水排水,2006,2(4):89-91.JIANG Chengchun,PANG Suyan,MA Jun,et al.Spectrophotometric determination of hydrogen peroxide in Fenton reaction with titanium oxalate.China Water & Wastewater,2006,2(4):89-91.
    [27] ASHCRAFT R W,RAMAN S,GREEN W H.Ab initio aqueous thermochemistry:application to the oxidation of hydroxylamine in nitric acid solution.Journal of Physical Chemistry,2007,1:11968-11983.
    [28] KIRBY A J,DAVIES J E,BRANDO T A S,et al.Hydroxylamine as an oxygen nucleophile.structure and reactivity of ammonia oxide.Journal of the American Chemical Society,2006,8:12374-12375.
    [29] 许晓毅,蔡岚,吉芳英,等.超声Fenton法处理毒死蜱中间体废水的工艺优化.环境科学研究,2015,8(11):1755-1763.XU Xiaoyi,CAI Lan,JI Fangying,et al.Process optimization of chlorpyrifos intermittent wastewater treatment by ultrasonic-combined Fenton reaction.Research of Environmental Sciences,2015,8(11):1755-1763.
    [30] ZENG Zequan,ZOU Haikui,LI Xin,et al.Ozonation of phenol with O3/Fe(Ⅱ) in acidic environment in a rotating packed bed.Industrial & Engineering Chemistry Research,2012,1:10509-10516.
  • 加载中
计量
  • 文章访问数:  1808
  • HTML全文浏览量:  16
  • PDF下载量:  1487
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 修回日期:  2016-01-22
  • 刊出日期:  2016-04-25

目录

    /

    返回文章
    返回