留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

零价铝还原处理偶氮染料活性蓝222废水

袁超 李磊 孙应龙 王邦达 徐辉 王毅

袁超, 李磊, 孙应龙, 王邦达, 徐辉, 王毅. 零价铝还原处理偶氮染料活性蓝222废水[J]. 环境科学研究, 2016, 29(7): 1067-1074.
引用本文: 袁超, 李磊, 孙应龙, 王邦达, 徐辉, 王毅. 零价铝还原处理偶氮染料活性蓝222废水[J]. 环境科学研究, 2016, 29(7): 1067-1074.
YUAN Chao, LI Lei, SUN Yinglong, WANG Bangda, XU Hui, WANG Yi. Treatment of Reactive Blue 222 Wastewater by Zero-Valent Aluminum Reduction[J]. Research of Environmental Sciences, 2016, 29(7): 1067-1074.
Citation: YUAN Chao, LI Lei, SUN Yinglong, WANG Bangda, XU Hui, WANG Yi. Treatment of Reactive Blue 222 Wastewater by Zero-Valent Aluminum Reduction[J]. Research of Environmental Sciences, 2016, 29(7): 1067-1074.

零价铝还原处理偶氮染料活性蓝222废水

基金项目: 国家自然科学基金青年基金项目(2014130052)

Treatment of Reactive Blue 222 Wastewater by Zero-Valent Aluminum Reduction

  • 摘要: 为有效处理难生物降解的碱性偶氮染料废水,以典型偶氮染料RB222(活性蓝222)为处理对象,在碱性条件下直接采用零价铝进行还原处理,并系统评价了溶液pH、反应温度以及零价铝粉投加量等因素对偶氮染料分子降解效果的影响. 结果表明:随着pH从7.00增至12.00,脱色率从62.6%升至98.4%;零价铝粉投加量从5 g/L增至50 g/L,脱色率从90.8%升至98.8%. 零价铝还原处理偶氮染料最优条件:温度为60~80 ℃,零价铝粉投加量为10~25 g/L,体系pH为11. 在该条件下,经过2 h处理,脱色率超过99%,溶液可生化性〔ρ(BOD5)/ρ(CODCr)〕从0.169升至0.386,易于后续生化处理. 电喷雾电离质谱(ESI-MS)和傅立叶变换红外线光谱分析仪(FTIR)分析表明,偶氮染料中—NN—(偶氮键)被破坏,还原产物中有苯胺类小分子. 根据试验结果推测偶氮染料的还原路径:水中的质子接受零价铝表面的电子生成活性氢,活性氢攻击—NN—,将偶氮化合物还原裂解成易于生物降解的苯胺类小分子物质. 通过处理江苏某地所取得的实际印染废水,废水的可生化性从0.126升至0.388,提高明显.

     

  • [1] 孙凌凌,俞从正.印染废水的治理现状及展望.印染助剂,2009,6(12):1-6.SUN Lingling,YU Congzheng.Status and prospect of dyeing and printing wastewater treatment.Textile Auxiliaries,2009,6(12):1-6.
    [2] MARTNEZ-HUITLE C A,BRILLAS E.Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:a general review.Applied Catalysis B:Environmental,2009,7(3/4):105-145.
    [3] 丁志斌,訾洛阳.印染废水脱色研究进展.给水排水,2008,4(S1):237-239.
    [4] 官宝红,徐根良,谭天恩.碱性印染废水的pH对活性污泥的影响及其控制.高校化学工程学报,2002,6(3):316-320.GUAN Baohong,XU Genliang,TAN Tianen.Control and effects of pH of printing and dyeing wastewater on activated sludge.Journal of Chemical Engineering of Chinese Universities,2002,6(3):316-320.
    [5] 操家顺,浩长江,方芳.印染废水回用的反渗透预处理技术.环境科学研究,2014,7(7):742-748.CAO Jiashun,HAO Changjiang,FANG Fang.Pretreatment of reverse osmosis for reuse of dyeing wastewater.Research of Environmental Sciences,2014,7(7):742-748.
    [6] RAUF M A,ASHRAF S S.Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution.Chemical Engineering Journal,2009,1(1/2/3):10-18.
    [7] CHOI Y,PARK B,CHA D K.Enhancing biological treatment of dye wastewater with zero-valent iron.Korean Journal of Chemical Engineering,2015,2(9):1812-1817.
    [8] ZHANG Yaobin,LIU Yiwen,JING Yanwen,et al.Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality.Journal of Environmental Sciences,2012,4(4):720-727.
    [9] CHATTERJEE S,LIM S,WOO S H.Removal of reactive black 5 by zero-valent iron modified with various surfactants.Chemical Engineering Journal,2010,0(1):27-32.
    [10] NAM S,TRATNYEK P G.Reduction of azo dyes with zero-valent iron.Water Research,2000,4(6):1837-1845.
    [11] FENG W,NANSHENG D,HELIN H.Degradation mechanism of azo dye C.I.reactive red 2 by iron powder reduction and photooxidation in aqueous solutions.Chemosphere,2000,1(8):1233-1238.
    [12] HE Yang,GAO Jingfeng,FENG Fangqing,et al.The comparative study on the rapid decolorization of azo,anthraquinone and triphenylmethane dyes by zero-valent iron.Chemical Engineering Journal,2012,9:8-18.
    [13] 王国贤.零价铁还原硝基苯的反应机理及影响因素.水资源保护,2007,3(4):85-87.WANG Guoxian.Mechanisms and influencing factors of the deoxidization of nitrobenzene by zero-valent iron.Water Resources Protection,2007,3(4):85-87.
    [14] BOKARE A D,CHOI W.Zero-valent aluminum for oxidative degradation of aqueous organic pollutants.Environmental Science & Technology,2009,3(18):7130-7135.
    [15] WEN Gang,WANG Shenjun,MA Jun,et al.Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition.Journal of Hazardous Materials,2014,5:193-199.
    [16] 中国国家标准化管理委员会.HJ 505—2009 水质五日生化需氧量(BOD5)的测定稀释与接种法.北京:中国标准出版社,2009.
    [17] 中国国家标准化管理委员会.GB 11914—1989 水质 化学需氧量的测定 重铬酸盐法.北京:中国标准出版社,2009.
    [18] 王文东,杨宏伟,蒋晶,等.水温和pH对饮用水中铝形态分布的影响.环境科学,2009,0(8):2259-2262.WANG Wendong,YANG Hongwei,JIANG Jing,et al.Effects of temperature and pH on the distribution of aluminum species in drinking water.Environmental Science,2009,0(8):2259-2262.
    [19] MIELCZARSKI J A,ATENAS G M,MIELCZARSKI E.Role of iron surface oxidation layers in decomposition of azo-dye water pollutants in weak acidic solutions.Applied Catalysis B:Environmental,2005,6(4):289-303.
    [20] PAUL J,KADAM A A,GOVINDWAR S P,et al.An insight into the influence of low dose irradiation pretreatment on the microbial decolouration and degradation of reactive red-120 dye.Chemosphere,2013,0(4):1348-1358.
    [21] YUE Y,MIN G,YUEXI Z,et al.Removal of High-concentration acid red 73 in aqueous solution by using the prepared Fe/Cu bimetallic particles.Journal of Environmental Engineering,2014,0(6):4014016.
    [22] PHAM V H,PHAM H D,DANG T T,et al.Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen.Journal of Materials Chemistry,2012,2(21):10530.
    [23] FBOS V,YUEN A K L,MASTERS A F,et al.Exploring the myth of nascent hydrogen and its implications for biomass conversions.Chemistry:An Asian Journal,2012,7(11):2629-2637.
    [24] ROY G.Study of tropaeolin degradation by iron-proposition of a reaction mechanism.Water Research,2003,7(20):4954-4964.
    [25] KAVITHA V,PALANIVELU K.Destruction of cresols by Fenton oxidation process.Water Research,2005,9(13):3062-3072.
    [26] RAMIREZ J H,MALDONADO-HDAR F J,PREZ-CADENAS A F,et al.Azo-dye orangeⅡdegradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts.Applied Catalysis B:Environmental,2007,5(3/4):312-323.
    [27] JIN J,EL-DIN M G,BOLTON J R.Assessment of the UV/Chlorine process as an advanced oxidation process.Water Research,2011,5(4):1890-1896.
    [28] DHARMARATHNE L,ASHOKKUMAR M,GRIESER F.On the generation of the hydrated electron during the sonolysis of aqueous solutions.The Journal of Physical Chemistry A,2013,7(12):2409-2414.
    [29] LABORDA F,BOLEA E,BARANGUAN M T.Hydride generation in analytical chemistry and nascent hydrogen:when is it going to be over?.Spectrochimica Acta Part B,2002,7(2):797-802.
    [30] ZHENG Weixin,MICHELLE M,MATTHEW A.Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers.Ultrasonics Sonochemistry,2005,2(4):313-317.
  • 加载中
计量
  • 文章访问数:  2092
  • HTML全文浏览量:  14
  • PDF下载量:  1131
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-02
  • 修回日期:  2016-04-07
  • 刊出日期:  2016-07-25

目录

    /

    返回文章
    返回