留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直流湿地基质中酶的分布与氮磷及有机质的关系

许巧玲 王小毛 崔理华 李哲 林顺娇

许巧玲, 王小毛, 崔理华, 李哲, 林顺娇. 垂直流湿地基质中酶的分布与氮磷及有机质的关系[J]. 环境科学研究, 2016, 29(8): 1213-1217.
引用本文: 许巧玲, 王小毛, 崔理华, 李哲, 林顺娇. 垂直流湿地基质中酶的分布与氮磷及有机质的关系[J]. 环境科学研究, 2016, 29(8): 1213-1217.
XU Qiaoling, WANG Xiaomao, CUI Lihua, LI Zhe, LIN Shunjiao. Spatial Distribution of Substrate Enzyme and Its Relationship with TN, TP and Organic Matter Content in a Vertical Flow Constructed Wetland[J]. Research of Environmental Sciences, 2016, 29(8): 1213-1217.
Citation: XU Qiaoling, WANG Xiaomao, CUI Lihua, LI Zhe, LIN Shunjiao. Spatial Distribution of Substrate Enzyme and Its Relationship with TN, TP and Organic Matter Content in a Vertical Flow Constructed Wetland[J]. Research of Environmental Sciences, 2016, 29(8): 1213-1217.

垂直流湿地基质中酶的分布与氮磷及有机质的关系

基金项目: 国家自然科学基金项目(41271245);广东省科技计划项目(2012A020100003);广东省教育厅广东高校污水生态处理与水体修复工程技术研究中心建设项目(2012gczxA1004)

Spatial Distribution of Substrate Enzyme and Its Relationship with TN, TP and Organic Matter Content in a Vertical Flow Constructed Wetland

  • 摘要: 为了解垂直流人工湿地基质中酶的空间分布特点及其与基质中氮磷和有机质的关系,采用垂直流人工湿地微宇宙试验系统进行了为期4个月的运行试验,分析种植植物的皇竹草系统和不种植物的对照系统基质中不同深度层酶活性的变化,以及酶活性与基质中污染物的关系. 结果表明:脲酶、磷酸酶、过氧化氢酶、转化酶、蛋白酶和纤维素酶这6种酶的活性在上层(0~<10 cm)的分布特点相一致,即皇竹草系统基质中的酶活性显著高于对照系统(P<0.05). 在垂直方向上,两个系统中6种酶的活性都表现为上层显著较高,这与基质中w(TN)、w(TP)和w(有机质)的分布规律相一致;Pearson相关性分析发现,脲酶活性与w(TN)、w(TP)、w(有机质)均呈极显著正相关(相关系数依次为0.951、0.970、0.933,P均小于0.01),过氧化氢酶、转化酶活性均与w(TN)呈极显著正相关(相关系数依次为0.997、0.916,P均小于0.01),磷酸酶活性与w(TP)、w(有机质)均呈极显著正相关(相关系数依次为0.925、0.919,P均小于0.01),转化酶活性与w(TP)呈显著相关(相关系数为0.869,P<0.05),纤维素酶活性与w(有机质)呈显著相关(相关系数为0.864,P<0.05). 研究显示,在垂直流人工湿地系统中种植皇竹草有助于提高基质中酶的活性,酶活性与氮磷及有机质等污染物的积累和迁移密切相关.

     

  • [1] 籍国东,倪晋仁.人工湿地废水生态处理系统的作用机制.环境污染治理技术和设备,2004,5(6):71-75.JI Guodong,NI Jinren.Mechanisms of constructed wetland wastewater ecological treatment systems.Techniques and Equipment for Environmental Pollution Control,2004,5(6):71-75.
    [2] KIVAISI A K.The potential for constructed wetlands for wastewater treatment and reuse in developing countries:a review.Ecological Engineering,2001,6(4):545-560.
    [3] 崔理华,卢少勇.污水处理的人工湿地构建技术.北京:化学工业出版社,2009:165.
    [4] YAN Yijing,XU Jingcheng.Improving winter performance of constructed wetlands for wastewater treatment in Northern China: areview.Wetlands,2014,4:243-253.
    [5] PROCHASKA C A,ZOUBOULIS A I,ESKRIDGE K M.Performance of pilot-scale vertical-flow constructed wetlands,as affected by season,substrate,hydraulic load and frequency of application of simulate urban sewage.Ecological Engineering,2007,1:57-66.
    [6] BABATUNDE A O,ZHAO Yaqian,O'NEILL M,et al.Constructed wetlands for environmental pollution control:a review of developments,research and practice in Ireland.Environment International,2008,4(1):116-126.
    [7] LIANG Wei,WU Zhenbin,CHENG Shuiping,et al.Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system.Ecological Engineering,2003,1(23):191-195.
    [8] MARTENS D A,JOHANSON J B,FRANKENBERGER W T.Production and persistence of soil enzymes with repeated addition of organic residues.Soil Science,1992,3:53-61.
    [9] KANG H,FREEMAN C,LEE D,et al.Enzyme activities in constructed wetlands:implication for water quality amelioration.Hydrobiologia,1998,8:231-235.
    [10] ZHOU Q H,WU Z B,CHENG S P,et al.Enzymatic activities in constructed wetlands and din-butyl phthalate (DBP) biodegradation.Soil Biology & Biochemistry,2005,7:1454-1459.
    [11] SHACKLE V,FREEMAN C,REYNOLDS B.Exogenous enzyme supplements to promote treatment efficiency in constructed wetlands.Science of the Total Environment,2006,1:18-24.
    [12] KANG H,FREEMAN C,LEE D,et al.Enzyme activities in constructed wetlands:implication for water quality amelioration.Hydrobiologia,1998,8:231-235.
    [13] FREEMAN C,LOCK M A,HUGHES S,et al.Nitrous oxide emissions and the use of constructed wetlands for water quality amelioration environment.Water Science Technology,1997,1:2438-2440.
    [14] SHACKLE V J,FREEMAN C,REYNOLDS B.Carbon supply and the regulation of enzyme activity in constructed wetlands.Soil Biology & Biochemistry,2000,2:1935-1940.
    [15] MCLATCHEY G P,REDDY K R.Regulation of organic matter decomposition and nutrient release in a wetland soil.Journal of Environmental Quality,1998,7(5):1268-1274.
    [16] 吴振斌,梁威,成水平,等.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析.环境科学学报,2001,1(5):622-624.WU Zhenbin,LIANG Wei,CHENG Shuiping,et al.Studies on correlation between the enzymatic activities in the rhizosphere and purification of wastewater in the constructed wetland.Acta Scientiae Circumstantiae,2001,1(5):622-624.
    [17] KONG ling,WANG Yubin,ZHAO lina,et al.Enzyme and root activities in surface-flow constructed wetlands.Chemosphere,2009,6:601-608.
    [18] CUI Lihua,OUYANG Ying,GU Wenjie,et al.Evaluation of nutrient removal efficiency and microbial enzyme activity in a baffled subsurface-flow constructed wetland system.Bioresource Technology,2013,6:656-662.
    [19] ZHANG Baojun,BAI Xiaolong,HE Kanglin,et al.Distribution status of soil microbes and enzyme activity in bio-salver.Environment Science Technology,2007,0(9):26-28.
    [20] SPOHN M,KUZYAKOV Y.Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots:a soil zymography analysis.Plant Soil,2014,9:67-77.
    [21] 关松荫.土壤酶及其研究方法.北京:农业出版社,1986.
    [22] 鲍士旦.土壤农化分析.北京:中国农业出版社,2005.
    [23] AON M A,COLANERI A C.Temporal and spatial evolution of enzymatic activities and physic-chemical properties in an agricultural soil.Plant Physiology,2001,8(3):255-270.
    [24] XU Xiaofeng,SONG Changchun,SONG Xia,et al.Carbon mineralization and the related enzyme activity of soil in wetland.Ecology and Environment,2004,3(1):40-42.
    [25] NIEMI R M,VEPSALAINEN M,WALLENIUS K,et al.Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field.Applied Soil Ecology,2005,0:113-125.
    [26] 万忠梅,宋长春.小叶章湿地土壤酶活性分布特征及其与活性有机碳表征指标的关系.湿地科学,2008,6(2):249-257.WAN Zhongmei,SONG Changchun.Vertical dynamics of soil enzyme activities and its relationship with active organic carbon indicators in Calamagrostis angustifolia Wetland.Wetland Science,2008,6(2):249-257.
    [27] SHACKLE V J,FREEMAN C,REYNOLDS B.Exogenous enzyme supplements to promote treatment efficiency in constructed wetlands.Science of the Total Environment,2006,1(1/2/3):18-24.
    [28] DUARTE B,REBOREDA R,CACADOR I.Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh.Chemosphere,2008,3(7):1056-1063.
    [29] REBOREDA R,CACADOR I.Enzymatic activity in the rhizosphere of Spartina maritima:potential contribution for phytoremediation of metals.Marine Environmental Research,2008,5(1):77-84.
    [30] FU Gang,LIU Zengwen,CUI Fangfang.Features of soil enzyme activities and the number of microorganisms in plantations and their relationships with soil nutrients in the Qinling Mountains,China.Frontiers of Forestry in China,2009,4(3):344-350.
    [31] 解丽娜,贡璐,朱美玲,等.塔里木盆地南缘绿洲土壤酶活性与理化因子相关性.环境科学研究,2014,7(11):1306-1313.XIE Lina,GONG Lu,ZHU Meiling,et al.Soil enzyme activities and their correlation with physicochemical factors in the oasis of southern margin of Tarim Basin.Research of Environmental Sciences,2014,7(11):1306-1313.
    [32] 聂大刚,王亮,尹澄清,等.白洋淀湿地土壤酶活性空间分布与污染物关系研究.湿地科学,2008,6(2):204-211.NIE Dagang,WANG Liang,YIN Chengqing,et al.Spatial distribution of soil enzyme activities and the relationship with pollutants in wetlands of Baiyangdian.Wetland Science,2008,6(2):204-211.
  • 加载中
计量
  • 文章访问数:  1290
  • HTML全文浏览量:  11
  • PDF下载量:  837
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-20
  • 修回日期:  2015-12-15
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回