留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富里酸对针铁矿吸附Cr(Ⅵ)的影响机理

谢发之 李海斌 李国莲 汪雪春 胡婷婷 圣丹丹 谢志勇

谢发之, 李海斌, 李国莲, 汪雪春, 胡婷婷, 圣丹丹, 谢志勇. 富里酸对针铁矿吸附Cr(Ⅵ)的影响机理[J]. 环境科学研究, 2016, 29(10): 1506-1512.
引用本文: 谢发之, 李海斌, 李国莲, 汪雪春, 胡婷婷, 圣丹丹, 谢志勇. 富里酸对针铁矿吸附Cr(Ⅵ)的影响机理[J]. 环境科学研究, 2016, 29(10): 1506-1512.
XIE Fazhi, LI Haibin, LI Guolian, WANG Xuechun, HU Tingting, SHENG Dandan, XIE Zhiyong. Effects of Fulvic Acid on the Adsorption of Chromium(Ⅵ) to Goethite[J]. Research of Environmental Sciences, 2016, 29(10): 1506-1512.
Citation: XIE Fazhi, LI Haibin, LI Guolian, WANG Xuechun, HU Tingting, SHENG Dandan, XIE Zhiyong. Effects of Fulvic Acid on the Adsorption of Chromium(Ⅵ) to Goethite[J]. Research of Environmental Sciences, 2016, 29(10): 1506-1512.

富里酸对针铁矿吸附Cr(Ⅵ)的影响机理

基金项目: 国家自然科学基金项目(21107001);安徽省自然科学基金项目(1608085MB43);安徽省教育厅自然科学研究重点项目(KJ2016A154)

Effects of Fulvic Acid on the Adsorption of Chromium(Ⅵ) to Goethite

  • 摘要: 为研究复杂三元体系中FA(fulvic acid,富里酸)对针铁矿吸附Cr(Ⅵ)的影响,探究FA对重金属Cr(Ⅵ)在环境中迁移转化的作用机理,通过改变FA的添加顺序及添加量,系统研究了FA存在时Cr(Ⅵ)在针铁矿上的吸附行为.结果表明:不添加FA时,离子强度增大促进了针铁矿对Cr(Ⅵ)的吸附;ρ(FA)为50 mg/L时,离子强度增加会抑制针铁矿对Cr(Ⅵ)的吸附.pH为6.98、离子强度为1.0 mol/L时,针铁矿对Cr(Ⅵ)的吸附量比不添加FA时高11.0%.pH为2.98时,添加FA后针铁矿对Cr(Ⅵ)的吸附量最大,比不添加FA时高31.9%.无论是否添加FA,升温均有利于针铁矿对Cr(Ⅵ)吸附,其吸附机理可能是氢键、偶极间力等作用.FA的添加顺序对Cr(Ⅵ)吸附量的影响表现为后添加FA>先添加FA>同时添加FA>对照.研究显示,FA的存在能显著改变针铁矿对Cr(Ⅵ)的吸附行为.

     

  • [1] VAN ZOMEREN A,COSTA A,PINGEIRO J P,et al.Proton binding properties of humic substances originating from natural and contaminated materials.Environmental Science & Technology,2009,43(5):1393-1399.
    [2] QIU Bin,XU Cuixia,SUN Dezhi,et al.Polyaniline coated ethyl cellulose with improved hexavalent chromium removal.ACS Sustainable Chemistry & Engineering,2014,2(8):2070-2080.
    [3] LI Pingweng,TEMMINGINGHOFF E J M,VAN RIEMSDIJK W H.Contribution of individual sorbents to the control of heavy metal activity in sandy soil.Geoderma,2003,113(3/4):341-345.
    [4] PLAZA C,SENESI N,POLOl A,et al.Acid-base properties of humic and fulvic acids formed during composting.Environmental Science & Technology,2005,39(18):7141-7146.
    [5] XU Ying,AXE L,YEE N,et al.Bidentate complexation modeling of heavy metal adsorption and competition on goethite.Environmental Science & Technology,2006,40(7):2213-2218.
    [6] LEE S S,NAGY K L,PARKC,et al.Heavy metal sorption at the muscovite(001)-fulvic acid interface.Environmental Science & Technology,2011,45(22):9574-9581.
    [7] OSTMAN M,WAHLHERG O,MARTENSSON A.Leachability and metal-binding capacity in ageing landfill material.Waste Management,2008,28(1):142-150.
    [8] LI Pingweng,VAN RIEMSDIJKW H,KOOPAL L K,et al.Ligand and charge distribution(LCD) model for the description of fulvic acid adsorption to goethite.Journal of Colloid and Interface Science,2006,302(2):442-457.
    [9] YAMAZAKI H,GOHDA S,NISHIKAWA Y.Chemical forms of chromium in natural water.Journal of the Oceanographical Society of Japan,1980,35(6):233-240.
    [10] XIE Jinyu,GU Xueyuan,TONG Fei,et al.Surface complexation modeling of Cr(Ⅵ) adsorption at the goethite-water interface.Journal of Colloid and Interface Science,2015,455:55-62.
    [11] SASKAR B,NAIDU R,KRISHNAMRTI G S R,et al.Manganese(Ⅱ)-catalyzed and clay-minerals-mediated reduction of chromium(Ⅵ) by citrate.Environmental Science & Technology,2013,47(23):13629-13636.
    [12] DAI Runan,YU Changyuan,LIU Jing,et al.Photo-oxidation of Cr(Ⅲ)-citrate complexes forms harmful Cr(Ⅵ).Environmental Science & Technology,2010,44(18):6959-6964.
    [13] WANG Lijun,PUTNIS C V,RUIZ-AGUDO E,et al.In situ imaging of interfacial precipitation of phosphate on goethite.Environmental Science & Technology,2015,49(10):4184-4192.
    [14] DULNEE U S,SCHEINOST A C.Surface reaction of Sn(Ⅱ) on goethite(α-FeOOH):surface complexation,redox reaction,reductive dissolution,andphase transformation.Environmental science & Technology,2014,48(16):9341-9348.
    [15] WANG Zimeng,SCHENKEVELD W D C,et al.Synergistic effect of reductive and ligand-promoted dissolution of goethite.Environmental Science & Technology,2015,49(12):7236-7244.
    [16] RAHIMI S,MOATTARI R M,RAJABI L,et al.Iron oxide/hydroxide(α,γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media.Journal of Industrial and Engineering Chemistry,2015,23:33-43.
    [17] SONG Xiaowei,BOILY J F.Water vapor adsorption on goethite.Environmental Science & Technology,2013,47(13):7171-7177.
    [18] HAYES K,PAPELIS C,LECKIE J.Modeling ionic-strength effects on anion adsorption at hydrous oxide solution interfaces.Journal of Colloid and Interface Science,1998,125(2):717-726.
    [19] 谈波.针铁矿、赤铁矿对铅的吸附及其CD-MUSIC模型拟合.武汉:华中农业大学,2012:35-40.
    [20] KATHY L,GODTFREDSE N,STONE A T.Solubilization of manganese of manganese dioxide-bound copper by naturally occurring organic compounds.Environmental Science & Technology,1994,28:1450-1458.
    [21] 蔡鹏.磷酸盐和富里酸,腐殖酸在针铁矿/水界面的竞争吸附研究.北京:中国地质大学,2013:40-41.
    [22] FUOSS R M.Ionic association:Ⅲ.the equilibrium between ion pairs and free ions.Journal of the American Chemical Society,1958,80(19):5059-5061.
    [23] LI Jie,ZHANG Shouwei,CHEN Changlun,et al.Removal of Cu(Ⅱ) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles.ACS Applied Materials & Interfaces,2012,4(9):4991-5000.
    [24] BANDARA J,MIELCZARSKIJ A,KIWI J.Molecular mechanism of surface recognition:azo dyes degradation on Fe,Ti,and Al oxides through metal sulfonate complexes.Langmuir,1999,15(22):7670-7679.
    [25] FU Zhiyou,WU Fengchang,SONG Kang,et al.Competitive interaction between soil-derived humic acid and phosphate on goethite.Applied Geochemistry,2013,36:125-131.
    [26] PARKH J,TAVLARIDE L L.Adsorption of chromium(Ⅵ) from aqueous solutions using an imidazole functionalized adsorbent.Industrial & Engineering Chemistry Research,2008,47(10):3401-3409.
    [27] 周少丽,贺燕.铬在黄腐酸上吸附行为及机理的研究.有色矿冶,2008,23(6):46-48.ZHOU Shaoli,HE Yan.Study the adsorption behavior and mechanism of chromium on fulvichumic NON-Ferrous Mining and Metallurgy,2008,23(6):46-48.
    [28] YU Xiaohong,ZHU Lijun,GUO Baiwei,et al.A study on the adsorption of chromium on laterite from Guizhou Province,China.Chinese Journal of Geochemistry,2009,28(2):220-226.
    [29] ALVAREZ-PUEBL R A,VALENZUELA-CALAHORRO C,GARRIDO J.Theoretical study on fulvic acid structure,conformation and aggregation:a molecular modelling approach.Science of the Total Environment,2006,358(1):243-254.
    [30] 朱启红,夏红霞.黄腐酸吸附土壤 Cr6+的模型研究.水土保持通报,2011,31(2):133-137.ZHU Qihong,XIA Hongxie.Adsorption model of soil Cr6+ by fulvichumic.Bulletin of Soil and Water Conservation,2011,31(2):133-137.
    [31] 石书柳,吴丽梅,廖立兵.赤铁矿对模拟污水中重金属铬(Ⅵ) 离子的吸附及固定化.化工进展,2013,32(8):1949-1954.SHI Shuliu,WU Limei,LIAO Libing.Adsorption and fixation of chromium(Ⅵ) ion from simulated wastewater on hematite.Chemical Industry and Engineering Progress,2013,32(8):1949-1954.
    [32] CHEN J,HONG X,XIE Q,et al.Sepiolite fiber oriented-polypyrrole nanofibers for efficient chromium(Ⅵ) removal from aqueous solution.Journal of Chemical & Engineering Data,2014,59(7):2275-2282.
    [33] 罗文倩,魏世强.镉在针铁矿,针铁矿-腐植酸复合胶体中吸附解吸行为比较研究.农业环境科学学报,2009,28(5):897-902.LUO Wenqian,WEI Shiqiang.Adsorption and desorption behaviors of cadmium on/from goethite and its compound colloid with humic acids[ J].Journal of Agro-Environment Science,2009,28(5):897-902.
  • 加载中
计量
  • 文章访问数:  1694
  • HTML全文浏览量:  12
  • PDF下载量:  1384
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-18
  • 修回日期:  2016-06-23
  • 刊出日期:  2016-10-25

目录

    /

    返回文章
    返回