留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模拟-优化模型的某场地污染地下水抽水方案设计

万鹏 张旭 李广贺 马骏 胡迪

万鹏, 张旭, 李广贺, 马骏, 胡迪. 基于模拟-优化模型的某场地污染地下水抽水方案设计[J]. 环境科学研究, 2016, 29(11): 1608-1616.
引用本文: 万鹏, 张旭, 李广贺, 马骏, 胡迪. 基于模拟-优化模型的某场地污染地下水抽水方案设计[J]. 环境科学研究, 2016, 29(11): 1608-1616.
WAN Peng, ZHANG Xu, LI Guanghe, MA Jun, HU Di. Designof Contaminant Groundwater Pumping Scheme based on a Simulation-Optimization Model[J]. Research of Environmental Sciences, 2016, 29(11): 1608-1616.
Citation: WAN Peng, ZHANG Xu, LI Guanghe, MA Jun, HU Di. Designof Contaminant Groundwater Pumping Scheme based on a Simulation-Optimization Model[J]. Research of Environmental Sciences, 2016, 29(11): 1608-1616.

基于模拟-优化模型的某场地污染地下水抽水方案设计

基金项目: 国家环境保护公益性行业科研专项(201009009);国家高技术研究发展计划(863)项目(2013AA06A207)

Designof Contaminant Groundwater Pumping Scheme based on a Simulation-Optimization Model

  • 摘要: 针对抽出-处理技术修复污染地下水时抽水方案不合理导致修复成本高、修复效果差的问题,以我国北方某化工企业搬迁场地局部区域苯污染地下水为对象,通过GMS软件联合MGO(modular groundwater optimizer)程序对抽水方案进行模拟优化.结果表明:研究区地下水中检出ρ(苯)最大值为700 μg/L,修复目标为100 μg/L;自然降解条件下需1 740 d才能达到修复目标,降解缓慢.经过技术比选,选择抽出-处理技术快速修复该污染地下水.通过模拟-优化模型对抽出-处理技术中的抽水方案进行优化设计,结果显示,当抽水时间小于600 d时,出现水头疏干,无法进行抽出处理修复;当抽水时间在600~700 d范围内时,设计的抽水时间越长,达到修复目标所需的总抽水量越小,修复成本越低;当设计抽水时间超过700 d时,修复成本增加,1 500 d的抽水方案较700 d总抽水量增加了2.38×106 m3.综合修复时间及修复成本分析,虽然抽水时间为700 d时抽水量最小,但相对于抽水时间为600 d的优化方案,其抽水量仅减少1.4%,经济性较差,因此推荐抽水时间采用600 d.

     

  • [1] 罗兰.我国地下水污染现状与防治对策研究.中国地质大学学报(社会科学版),2008,8(2):72-75.LUO Lan.Research on groundwater pollution and its prevention-control policy in China.Journal of China University of Geosciences(Social Sciences Edition),2008,8(2):72-75.
    [2] 梁亦欣,刘祥,于鲁冀.我国地下水污染现状及趋势.科技信息(科学教研),2007(27):487.
    [3] 赵勇胜.地下水污染场地污染的控制与修复.吉林大学学报(地球科学版),2007,37(2):303-310.ZHAO Yongsheng.Groundwater pollution control and remediation.Journal of Jilin University(Earth Science Edition),2007,37(2):303-310.
    [4] 郑西来,唐凤琳,辛佳,等.污染地下水零价铁原位反应带修复技术:理论·应用·展望.环境科学研究,2016,29(2):155-163.ZHENG Xilai,TANG Fenglin,XIN Jia,et al.Development of a zero-valent iron-based in-site reactive zones technique for remediation of contaminated groundwater.Research of Environmental Sciences,2016,29(2):155-163.
    [5] 裴宇,杨昱,马志飞,等.多级强化地下水修复技术对NH4+-N的去除机制.环境科学研究,2015,28(10):1624-1630.PEI Yu,YANG Yu,MA Zhifei,et al.NH4+-N removal mechanism of multi-layer enhanced groundwater remediation technique.Research of Environmental Sciences,2015,28(10):1624-1630.
    [6] 白静,孙超,赵勇胜.地下水循环井技术对含水层典型NAPL污染物的修复模拟.环境科学研究,2014,27(1):78-85.BAI Jing,SUN Chao,ZHAO Yongsheng.Remediation simulation of groundwater circulation well of NAPL contaminated aquifer.Research of Environmental Sciences,2014,27(1):78-85.
    [7] ZHENG Chunmiao,BENNETT G D.地下水污染物迁移模拟.2版.北京:高等教育出版社,2009:328-359.
    [8] GUAN J,ARAL M M.Optimal remediation with well locations and pumping rates selected as continuous decision variables.Journal of Hydrology,1999,221(1):20-42.
    [9] MANTOGLOU A,KOURAKOS G.Optimal groundwater remediation under uncertainty using multi-objective optimization.Water Resources Management,2007,21(5):835-847.
    [10] CHANG L C,CHU H,HSIAO C.Optimal planning of a dynamic pump-treat-inject groundwater remediation system.Journal of Hydrology,2007,342(3):295-304.
    [11] GUNGOR-DEMIRCI G,AKSOY A.Evaluation of the genetic algorithm parameters on the optimization performance:a case study on pump-and-treat remediation design.Top,2010,18(2):303-320.
    [12] GUAN J,ARAL M M,MASLIA M L,et al.Identification of contaminant sources in water distribution systems using simulation-optimization method:case study.Journal of Water Resources Planning and Management,2006,132(4):252-262.
    [13] CARDIFF M,LIU X,KITANIDIS P K,et al.Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model.Journal of Contaminant Hydrology,2010,113(1):25-43.
    [14] PARK C,ARAL M M.Multi-objective optimization of pumping rates and well placement in coastal aquifers.Journal of Hydrology,2004,290(1):80-99.
    [15] SINGH T S,CHAKRABARTY D.Multiobjective optimization of pump-and-treat-based optimal multilayer aquifer remediation design with flexible remediation time.Journal of Hydrologic Engineering,2011,16(5):413-420.
    [16] SHARIEF S,ELDHO T I,RASTOGI A K,et al.Optimal groundwater remediation by pump and treat using FEM-and EGA-based simulation-optimization model.Journal of Hazardous,Toxic,and Radioactive Waste,2012,16(2):106-117.
    [17] KO N,LEE K,HYUN Y.Optimal groundwater remediation design of a pump and treat system considering clean-up time.Geosciences Journal,2005,9(1):23-31.
    [18] KO N,LEE K.Information effect on remediation design of contaminated aquifers using the pump and treat method.Stochastic Environmental Research and Risk Assessment,2010,24(5):649-660.
    [19] CHEN Z,NIE Z,ZHANG Z,et al.Isotopes and sustainability of ground water resources,North China Plain.Ground Water,2005,43(4):485-493.
    [20] LIU Jie,ZHENG Chunmiao,ZHENG Lei,et al.Ground water sustainability:methodology and application to the North China Plain.Ground Water,2008,46(6):897-909.
    [21] ZHENG C,WANG P P.A field demonstration of the simulation optimization approach for remediation system design.Ground Water,2002,40(3):258-266.
    [22] 刘苑.地下水污染区抽水井优化研究.北京:清华大学,2008:44-66.
    [23] 万鹏.污染地下水抽出-处理技术的抽水方案优化研究.北京:清华大学,2013:10-15.
    [24] 马志飞,安达,姜永海,等.某危险废物填埋场地下水污染预测及控制模拟.环境科学,2012,33(1):64-70.MA Zhifei,AN Da,JIANG Yonghai,et al.Simulation on contamination forecast and control of groundwater in a certain hazardous waste landfill.Environmental Science,2012,33(1):64-70.
    [25] 刘明柱,陈鸿汉,胡丽琴.北方某城市浅层地下水中有机污染物迁移转化的数值模拟研究.中国地质,2005,32(3):507-511.LIU Mingzhu,CHEN Honghan,HU Liqin.Numerical modeling of transport of organic pollutants in shallow groundwater in a certain city of northern China.Geology in China,2005,32(3):507-511.
    [26] HARBAUGH A W,MCDONALD M G.User′s documentation for MODFLOW-96:an update to the US Geological Survey modular finite-difference groundwater flow model.Virginia US:Geological Survey,1996:96-485.
    [27] HARBAUGH A W.MODFLOW-2005,the US Geological Survey modular ground-water model:the ground-water flow process.Virginia US:Geological Survey,2005:3-13.
    [28] ZHENG C.MT3D:a modular three-dimensional transport model for simulation of advection,dispersion and chemical reactions of contaminants in groundwater systems.Rockville US:SS Papadopulos & Associates,Inc.,1992:2-9.
    [29] ZHENG C,WANG P P.MT3DMS:a modular three-dimensional multispecies transport model for simulation of advection,dispersion,and chemical reactions of contaminants in groundwater systems;documentation and user′s guide.Ajr American Journal of Roentgenology,1999,169(4):1196-1197.
    [30] ZHENG C,WANG P P.MGO:amodular groundwater optimizer incorporating MODFLOW/MT3DMS,documentation and user′s guide.Tuscaloosa AL:University of Alabama and Groundwater Systems Research Ltd.,2003.
    [31] 刘兆昌,李广贺,朱琨.供水水文地质.4版.北京:中国建筑工业出版社,2011:109-118
    [32] 胡桂全.BTEX在含水层中迁移转化规律研究.长春:吉林大学,2009:43-44.
    [33] 李林鳞,郭志新,李哲,等.苯和菲在含水层的典型介质中迁移转化研究.四川环境,2012,31(2):1-6.LI Linlin,GUO Zhixin,LI Zhe,et al.Study on migration of benzene and phenanthrene in the typical aquifer medium.Sichuan Environment,2012,31(2):1-6.
  • 加载中
计量
  • 文章访问数:  2401
  • HTML全文浏览量:  18
  • PDF下载量:  1445
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-10
  • 修回日期:  2016-07-01
  • 刊出日期:  2016-11-25

目录

    /

    返回文章
    返回