留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

京津冀地区散烧煤与电采暖大气污染物排放评估

徐钢 王春兰 许诚 白璞

徐钢, 王春兰, 许诚, 白璞. 京津冀地区散烧煤与电采暖大气污染物排放评估[J]. 环境科学研究, 2016, 29(12): 1735-1742.
引用本文: 徐钢, 王春兰, 许诚, 白璞. 京津冀地区散烧煤与电采暖大气污染物排放评估[J]. 环境科学研究, 2016, 29(12): 1735-1742.
XU Gang, WANG Chunlan, XU Cheng, BAI Pu. Evaluation of Air Pollutant Emissions from Scattered Coal Burning and Electric Heating in Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2016, 29(12): 1735-1742.
Citation: XU Gang, WANG Chunlan, XU Cheng, BAI Pu. Evaluation of Air Pollutant Emissions from Scattered Coal Burning and Electric Heating in Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2016, 29(12): 1735-1742.

京津冀地区散烧煤与电采暖大气污染物排放评估

基金项目: 国家自然科学基金项目(51476053);中央高校基本科研业务费专项基金项目(2015ZZD10);高等学校学科创新引智计划资助项目(B12034)

Evaluation of Air Pollutant Emissions from Scattered Coal Burning and Electric Heating in Beijing-Tianjin-Hebei Region

  • 摘要: 散烧煤供暖是一种污染物排放量大、一次能源利用效率低的供暖方式,亟需寻找一种新的供暖方式替代散烧煤供暖.在对比评估散烧煤与电煤各种主要污染物排放量的基础上,提出直接电采暖和低温空气源热泵两种替代散烧煤供暖方案,以缓解京津冀地区大气污染,并对改造前后的污染物排放量和技术经济性进行分析;从区域污染物综合减排的战略角度提出对京津冀地区原散烧煤采暖用户进行低温空气源热泵供暖改造和燃煤电厂执行“超净排放”改造两种方案,并对两种方案的污染物减排效果进行了对比.结果表明:单位散烧煤的污染物排放量远高于电煤,其中散烧煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为17.12、2.80、6.37和9.80 g/kg,电煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为0.43、0.85、0.17和0.47 g/kg,散烧煤对综合PM2.5的贡献是电煤的20.9倍;直接电采暖和低温空气源热泵供暖均能有效减少污染物排放量,其中直接电采暖可使每户每年采暖期的SO2、NOx、烟尘和综合PM2.5分别减排66.38、7.15、24.79和36.96 kg,而采用低温空气源热泵的减排量分别为67.79、9.97、25.35和38.52 kg,但直接电采暖方式的一次能源利用效率(仅为33.7%)极低,因此不适合大面积推广;京津冀地区原散烧煤采暖用户在进行低温空气源热泵供暖改造后,其SO2、NOx、烟尘和综合PM2.5年减排量分别为24.47×104、3.60×104、9.15×104和13.91×104 t,燃煤电厂执行“超净排放”改造后相应年减排量分别为1.28×104、4.25×104、1.30×104和2.31×104 t,其中低温空气源热泵供暖改造后的综合PM2.5减排量达到燃煤电厂改造的6.0倍,并且年投资也较燃煤电厂改造低约4×108元.研究显示,采用低温空气源热泵供暖在污染物减排量、技术经济性和实施可行性等方面均具有优势.

     

  • [1] 环境保护部.环境保护部发布2015年全国城市空气质量状况[EB/OL].北京:环境保护部,2016[2016-03-12].http://www.zhb.gov.cn/gkml/hbb/qt/201602/t20160204_329886.htm.
    [2] HUANG Weiqing,FAN Hongbo,QIU Yongfu,et al.Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou,China by employing the fault tree approach.Chemosphere,2016,151:9-16.
    [3] 江亿,唐孝炎,倪维斗,等.北京PM2.5与冬季采暖热源的关系及治理措施.中国能源,2014,36(1):7-13.
    [4] 杨文夷,李杰,朱莉莉,等.我国空气污染物人为源排放清单对比.环境科学研究,2013,26(7):703-711.YANG Wenyi,LI Jie,ZHU Lili,et al.Comparison of anthropogenic emission inventories of China.Research of Environmental Sciences,2013,26(7):703-711.
    [5] YAN Dong,ZHANG Tao,SU Jing,et al.Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days.Frontiers in Microbiology,2016,7(487):1-12.
    [6] 王慧丽,雷宇,陈潇君,等.京津冀燃煤工业和生活锅炉的技术分布与大气污染物排放特征.环境科学研究,2015,28(10):1510-1517.WANG Huili,LEI Yu,CHEN Xiaojun,et al.Technology distribution and air pollutant emissions from coal-fired boilers for industrial and residential use in Beijing-Tianjin-Hebei area.Research of Environmental Sciences,2015,28(10):1510-1517.
    [7] 中国煤炭消费总量控制方案和政策研究项目课题组.煤炭使用对中国大气污染的贡献.北京:国际自然资源保护协会(NRDC),2014:1-28.
    [8] 王志轩.煤电是中国治霾关键.中国电力企业管理,2014(17):36-40.
    [9] 王树民,宋畅,陈寅彪,等.燃煤电厂大气污染物“近零排放”技术研究及工程应用.环境科学研究,2015,28(4):487-494.WANG Shumin,SONG Chang,CHEN Yinhu,et al.Technology research and engineering applications of near-zero air pollutant emission coal-fired power plants.Research of Environmental Sciences,2015,28(4):487-494.
    [10] 汪俊,王祖光,赵斌,等.中国电力行业多污染物控制成本与效果分析.环境科学研究,2014,27(11):1314-1322.WANG Jun,WANG Zuguang,ZHAO Bin,et al.Cost-effectiveness analysis of multi-pollutant emission reduction in power sector of China.Research of Environmental Sciences,2014,27(11):1314-1322.
    [11] 支国瑞,杨俊超,张涛,等.我国北方农村生活燃煤情况调查、排放估算及政策启示.环境科学研究,2015,28(8):1179-1185.ZHI Guorui,YANG Junchao,ZHANG Tao,et al.Rural household coal use survey,emission estimation and policy implications.Research of Environmental Sciences,2015,28(8):1179-1185.
    [12] 国务院第一次全国污染源普查领导小组.第一次全国污染源普查城镇生活源产排污系数手册[EB/OL].北京:国务院第一次全国污染源普查领导小组办公室,2008[2016-02-23].http://www.docin.com/p-393983353.html.
    [13] 国家环境保护总局.排污申报登记实用手册.北京:中国环境科学出版社,2004.
    [14] DE-LA-TORRE U,PEREDA-AYO B,MOLINER M,et al.Cu-zeolite catalysts for NOx removal by selective catalytic reduction with NH3 and coupled to NO storage/reduction monolith in diesel engine exhaust aftertreatment systems.Applied Catalysis B:Environmental,2016,187:419-427.
    [15] 环境保护部.GB 13223—2011 火电厂大气污染物排放标准.北京:中国标准出版社,2011.
    [16] 国家统计局能源统计司.中国能源统计年鉴2014.北京:中国统计出版社,2015.
    [17] 罗陨飞,李文华,姜英,等.中国煤中硫的分布特征研究.煤炭转化,2005,28(3):14-18.LUO Yunfei,LI Wenhua,JIANG Ying,et al.Distribution of sulfur in coals of China.Coal Conversion,2005,28(3):14-18.
    [18] 虞江萍,崔萍,王五一.我国农村生活能源中SO2、NOx及TSP的排放量估算.地理研究,2008,27(3):547-555.YU Jiangping,CUI Ping,WANG Wuyi.Estimation on SO2,NOx and TSP emissions from energy consumption for non-production purpose in rural areas of China.Geographical Research,2008,27(3):547-555.
    [19] 唐跃刚,贺鑫,程爱国,等.中国煤中硫含量分布特征及其沉积控制.煤炭学报,2015,40(9):1977-1988.TANG Yuegang,HE Xin,CHENG Aiguo,et al.Occurrence and sedimentary control of sulfur in coals of China.Journal of China Coal Society,2015,40(9):1977-1988.
    [20] SHEN Guofeng,YANG Yifeng,WANG Wei,et al.Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical houselold stoves in China.Environmental Science & Technology,2010,44(18):7157-7162.
    [21] STREETS D G,GUPTA S,WALDHOFF S T,et al.Black carbon emissions in China.Atmospheric Environment,2001,35(25):4281-4296.
    [22] CHEN Yingjun,TIAN Chongguo,FENG Yanli,et al.Measurements of emission factors of PM2.5,OC,EC,and BC for household stoves of coal combustion in China.Atmospheric Environment,2015,109:190-196.
    [23] 环境保护部华南环境研究所.生活源产排污系数及使用说明(修订版2011)[EB/OL].广州:环境保护部华南环境研究所,2010[2016-03-28].http://www.doc88.com/p-0048366061005.html.
    [24] ZHAO Y,NIELSEN C P,LEI Y,et al.Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China.Atmospheric Chemistry and Physics,2011,11(5):2295-2308.
    [25] SHI Yun,XIA Yinfeng,LU Bihong,et al.Emission inventory and trends of NOx for China,2000-2020.Journal of Zhejiang University Science A,2014,15(6):454-464.
    [26] 陈建华,薄以匀,李培省,等.北京市民用小煤炉大气污染物排放特征研究//中国环境科学学会.第十届全国大气环境学术会议.南宁:中国环境科学学会,2003:303-307.
    [27] 莫华,朱法华,王圣.火电行业大气污染物排放对PM2.5的贡献及减排对策.中国电力,2013,46(8):1-6.MO Hua,ZHU Fahua,WANG Sheng.Contribution to PM2.5 of atmospheric pollutant emission from thermal power sector and emission reduction countermeasures.Electric Power,2013,46(8):1-6.
    [28] ZHANG Yang,HUANG Wei,CAI Tianqi,et al.Concentrations and chemical compositions of fine particles(PM2.5) during haze and non-haze days in Beijing.Atmospheric Research,2016,174/175:62-69.
    [29] 张昌.热泵技术与应用.北京:机械工业出版社,2015:11-12.
    [30] 于涛,乔春珍,赵玉清.空气源热泵+散热器低温采暖在北京农村地区应用的综合性分析.节能,2014(12):51-54.YU Tao,QIAO Chunzhen,ZHAO Yuqing.Comprehensive analysis of low temperature space heating system with air source heat pump and radiators in rural areas of Beijing.Energy Conservation,2014,(12):51-54.
    [31] 中国电力企业联合会.中国电力工业现状与展望[EB/OL].北京:中国电力企业联合会,2015[2016-03-31].http://www.cec.org.cn/yaowenkuaidi/2015-03-10/134972.html.
    [32] 中国电力年鉴编委会.2014中国电力年鉴.北京:中国电力出版社,2014.
    [33] 樊慧,段兆芳,单卫国.我国天然气发电发展现状及前景展望.中国能源,2015,37(2):37-42.
    [34] LIANG Caihua,ZHANG Xiaosong,LI Xiuwei,et al.Control strategy and experimental study on a novel defrosting method for air-source heat pump.Applied Thermal Engineering,2010,30(8/9):892-899.
    [35] YE H Y,PARK J S,LEE K S.Critical operating conditions for prevention of frost formation in fin-tube heat exchangers.International Journal of Heat & Mass Transfer,2014,76(76):279-285.
    [36] 董建锴.空气源热泵延缓结霜及除霜方法研究.哈尔滨:哈尔滨工业大学,2012.
  • 加载中
计量
  • 文章访问数:  2962
  • HTML全文浏览量:  18
  • PDF下载量:  1956
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-07
  • 修回日期:  2016-09-23
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回