留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可降解三乙胺的赤红球菌S6-2的筛选与鉴定及降解特性

孙磊 宋彤彤 朱珍妮 李丹阳 刘存歧

孙磊, 宋彤彤, 朱珍妮, 李丹阳, 刘存歧. 可降解三乙胺的赤红球菌S6-2的筛选与鉴定及降解特性[J]. 环境科学研究, 2016, 29(12): 1882-1886.
引用本文: 孙磊, 宋彤彤, 朱珍妮, 李丹阳, 刘存歧. 可降解三乙胺的赤红球菌S6-2的筛选与鉴定及降解特性[J]. 环境科学研究, 2016, 29(12): 1882-1886.
SUN Lei, SONG Tongtong, ZHU Zhenni, LI Danyang, LIU Cunqi. Screening,Identification and Characterization of a Triethylamine Degrading Bacterium Rhodococcus ruber S6-2[J]. Research of Environmental Sciences, 2016, 29(12): 1882-1886.
Citation: SUN Lei, SONG Tongtong, ZHU Zhenni, LI Danyang, LIU Cunqi. Screening,Identification and Characterization of a Triethylamine Degrading Bacterium Rhodococcus ruber S6-2[J]. Research of Environmental Sciences, 2016, 29(12): 1882-1886.

可降解三乙胺的赤红球菌S6-2的筛选与鉴定及降解特性

基金项目: 国家水体污染控制与治理科技重大专项(2012ZX07203003);河北省生物工程重点学科项目

Screening,Identification and Characterization of a Triethylamine Degrading Bacterium Rhodococcus ruber S6-2

  • 摘要: 为治理制药废水中残留的难降解有机污染物TEA(triethylamine,三乙胺),以石家庄某污水处理厂的活性污泥为材料,采用富集培养和选择培养,分离筛选到1株能以TEA为唯一碳源和氮源生长代谢的降解菌——S6-2.通过测定形态特征、生理生化特性、G+C(碱基对)摩尔百分比及16S rRNA基因序列系统发育分析,该菌株被鉴定为赤红球菌(Rhodococcus ruber).采用单一影响因素试验分析菌株S6-2对TEA的降解特性,结果表明:菌株S6-2具有较强的TEA降解能力及降解稳定性;其最适降解温度为32 ℃,最适降解pH为8.0.菌株S6-2可耐受较高浓度TEA,在ρ(TEA)为900 mg/L的培养基中仍能生长;在最适条件下,菌株S6-2对TEA的降解率为70.7%±1.8%.该株菌在含TEA的无机盐平板上传代培养15代后,对TEA的降解率为69.3%±2.5%,说明菌株S6-2对TEA的降解具有稳定性.研究显示,菌株S6-2可作为TEA污染水体生物修复的潜在资源.

     

  • [1] 温辉梁.化工助剂.南昌:江西科学技术出版社,2009:621.
    [2] 顾依平,夏亚东.三乙胺的毒性毒理学.卫生毒理学杂志,1990,4(1):44-46.
    [3] 卫生部,航空航天工业部.GB 18065—2000水源水中三乙胺卫生标准.北京:中国标准出版社,2000.
    [4] 朱晓燕,孙贤波,唐琪玮.离子交换树脂处理三乙胺废水.化工环保,2015,35(5):475-480.ZHU Xiaoyan,SUN Xianbo,TANG Qiwei.Treatment of triethylamine-containing wastewater with ion exchangeresin.Environmental Protection Chemical Industry,2015,35(5):475-480.
    [5] CAI Tianming,CHEN Liwei,REN Qian,et al.The biodegradation pathway of triethylamine and its biodegradation by immobilized Arthrobacte rprotophormiae cell.Journal of Hazardous Materials,2011,186(1):59-66.
    [6] 陈锡华.草甘膦生产中三乙胺的连续回收工艺.现代化工,2004,24(3):49-50.CHEN Xihua.A continous recovery process of triethylamine in producing glyphosate.Modern Chemical Industry,2004,24(3):49-50.
    [7] 申进忠,徐承杨.含混胺废水的处理.化工环保,1991,11(3):147-151.
    [8] WANG C C,LU K L,CHEN X Y,et al.Removal of triethylamine from synthetic wastewater by acclimated mixed bacteria cultures.International Biodeterioration and Biodegradation,2007,59(3):202-205.
    [9] 沈敏雅,胡江,蔡舒,等.三乙胺降解菌SYA-1的分离、降解性能与动力学.环境工程学报,2014,8(3):1243-1249.SHEN Minya,HU Jiang,CAI Shu,et al.Isolation and degradation characteristics of a triethylamine degrading strain SYA-1 and its kinetics.Chinese Journal of Environmental Engineering,2014,8(3):1243-1249.
    [10] 国家环境保护总局.GB/T 14377—1993水质三乙胺的测定 溴酚蓝分光光度法.北京:中国标准出版社,1993.
    [11] 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001:62-63,349-398.
    [12] MESBAH M,PREMACHANDRAN U,WHITMAN W B.Precise measurement of G+C content of deoxyribonucleic acid by high performance liquid chromatography.International Journal of Systematic and Evolutionary Microbiology,1989,39:159-167.
    [13] EDWARDS U,ROGALL T,BLACKER H,et al.Isolation and direct complete nucleotide determination of entire genes:characterization of a gene coding for 16S ribosomal RNA.Nucleic Acids Research,1989,17:7843-7853.
    [14] LANE D J.16s/23s rRNA sequencing//STACKEBRANDT E,GOODFELLOW M.Nucleic acid techniques in bacterial systematics,New York:John Wiley & Sons,1991:115-175.
    [15] SAITOU N,NEI M.The neighbor-joining method:a new method for reconstructing phylogenetic trees.Molecular Biology Evolution,1987,4:406-425.
    [16] TAMURA K,DUDLEY J,NEI M,et al.MEGA4:Molecular Evolutionary Genetics Analysis(MEGA) software version 4.0.Molecular Biology and Evolution,2007,24:1596-1599.
    [17] RAPPERT S,MLLER R.Microbial degradation of selected odorous substances.Waste Management,2005,25(9):940-954.
    [18] 苏建文,许尚营,陈建华,等.1株三乙胺高效降解菌的筛选鉴定及其降解特性研究.微生物学杂质,2015,35(1):54-60.SU Jianwen,XU Shangying,CHEN Jianhua,et al.Screening and identification of triethylamine-degradable bacteria and its biodegradation characteristics.Journal of Microbiology,2015,35(1):54-60.
    [19] RIKA J,FUSKOV J,KEK K,et al.Microbial degradation of N-methyl-2-pyrrolidone in surface water and bacteria responsible for the process.Water Science and Technology,2016,73(3):643-647.
    [20] AGGARWALR K,DAWAR C,PHANINDRANATH R,et al.Draft genome sequence of a versatile hydrocarbon-degrading bacterium,Rhodococcus pyridinivorans strain KG-16,collected from oil fields in India.Genome Announcements,2016,4(1):e01704- e01715.
    [21] LI Chunyan,ZANG Hailian,YU Qi,et al.Biodegradation of chlorimuron-ethyl and the associated degradation pathway by Rhodococcus sp.D310-1.Environmental Science and Pollution Research,2016,23(9):8794-8805.
    [22] HOU Jianfeng,LIU Feixia,WU Nan,et al.Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain.Journal of Nanobiotechnology,2016,14(5):2-8.
    [23] KAMINSKI U,JANKE D,PRAUSER H,et al.Degradation of aniline and monochloroanilines by Rhodococcus sp.an 117 and a pseudomonad:a comparative study.Zeitschrift für Allgemeine Mikrobiologie, 1983,23(4):235-46.
    [24] 谷洁,李生秀,秦清军,等.农业废弃物静态高温堆腐过程中的生物化学变化.中国农业科学,2005,38(8):1699-1705.GU Jie,LI Shengxiu,QIN Qingjun,et al.Changes of biochemical properties of agricultural waste materials during composting in high temperature and static state.Scientia Agricultura Sinica,2005,38(8):1699-1705.
  • 加载中
计量
  • 文章访问数:  1721
  • HTML全文浏览量:  11
  • PDF下载量:  1431
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-21
  • 修回日期:  2016-06-21
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回