留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeCl3改性钢渣脱除燃煤烟气中Hg0的研究

杨丽 石应杰 张辰 舒新前 张玉秀

杨丽, 石应杰, 张辰, 舒新前, 张玉秀. FeCl3改性钢渣脱除燃煤烟气中Hg0的研究[J]. 环境科学研究, 2017, 30(3): 450-456. doi: 10.13198/j.issn.1001-6929.2017.01.40
引用本文: 杨丽, 石应杰, 张辰, 舒新前, 张玉秀. FeCl3改性钢渣脱除燃煤烟气中Hg0的研究[J]. 环境科学研究, 2017, 30(3): 450-456. doi: 10.13198/j.issn.1001-6929.2017.01.40
YANG Li, SHI Yingjie, ZHANG Chen, SHU Xinqian, ZHANG Yuxiu. Fixed-Bed Studies of Removing Hg0 from Simulation Flue Gas by Using FeCl3 Composite Materials[J]. Research of Environmental Sciences, 2017, 30(3): 450-456. doi: 10.13198/j.issn.1001-6929.2017.01.40
Citation: YANG Li, SHI Yingjie, ZHANG Chen, SHU Xinqian, ZHANG Yuxiu. Fixed-Bed Studies of Removing Hg0 from Simulation Flue Gas by Using FeCl3 Composite Materials[J]. Research of Environmental Sciences, 2017, 30(3): 450-456. doi: 10.13198/j.issn.1001-6929.2017.01.40

FeCl3改性钢渣脱除燃煤烟气中Hg0的研究

doi: 10.13198/j.issn.1001-6929.2017.01.40
基金项目: 

国家高技术研究发展计划(863)项目 2013AA065001

2013年度国家环境保护公益性行业科研专项 201309018

详细信息
    作者简介:

    杨丽(1989-), 女, 河北石家庄人, yl19890410@126.com

    通讯作者:

    舒新前(1963-), 男, 陕西汉中人, 教授, 主要从事大气污染控制技术研究, shuxinqian@126.com

  • 中图分类号: X701

Fixed-Bed Studies of Removing Hg0 from Simulation Flue Gas by Using FeCl3 Composite Materials

Funds: 

 2013AA065001

 201309018

  • 摘要: 以钢铁厂废弃钢渣为原料,以丙酮溶液为分散剂制备FeCl3改性材料,在固定床吸附评价装置上考察了钢渣在FeCl3改性前后对模拟烟气中Hg脱除效果的影响,并结合吸附试验与微观表征对改性催化剂的脱汞性能进行分析.结果表明:氯是FeCl3改性钢渣吸附剂的主要活性组分,FeCl3的掺入使钢渣的比表面积由1.06 m2/g提高到1.32 m2/g,进而提高吸附剂的汞吸附容量,经FeCl3改性后废弃钢渣对汞的脱除效率比未改性前提升了3.2倍.SO2的存在降低了FeCl3改性钢渣材料的脱汞性能,持续通入的SO2与吸附剂接触占据了部分孔道和表面活性位点,使得对单质汞的吸附效率下降,200℃时含有SO2时的FeCl3改性钢渣吸附剂吸附量比未通入SO2气体的改性材料降低了75.57%;在含有HCl气体的烟气体系中,FeCl3改性钢渣材料对汞的脱除效率从3432.70 ng/g升至10341.10 ng/g,并且随着反应温度的升高零价汞向氧化态汞转化的效率增加.研究显示,SO2的存在降低了FeCl3改性钢渣吸附剂的脱汞性能,而HCl气体有效地促进了FeCl3改性钢渣吸附剂对零价汞(Hg0)的脱除.

     

  • 图  1  FeCl3改性钢渣的XRD图谱

    Figure  1.  XRD patterns of FeCl3 modified steel slag

    图  2  FeCl3改性钢渣孔分布曲线

    注:小图为N2吸附-脱附等温线.

    Figure  2.  The N2 adsorption isotherm chart of FeCl3 modified steel slag

    图  3  含SO2时不同温度下FeCl3改性钢渣的穿透率

    Figure  3.  Impact of temperature on penetration rate of FeCl3 modified steel slag

    图  4  含SO2时不同温度下FeCl3改性钢渣的吸附量

    Figure  4.  Impact of temperature on mercury adsorption capability of FeCl3 modified steel slag

    图  5  无SO2时不同温度下FeCl3改性钢渣材料的穿透率

    Figure  5.  Impact of temperature on penetration rate of FeCl3 modified steel slag

    图  6  无SO2时不同温度下FeCl3改性钢渣的吸附量

    Figure  6.  Impact of temperature on mercury adsorption capability of FeCl3 modified steel slag

    图  7  钢渣经FeCl3改性前后的穿透率

    Figure  7.  Penetration rate of steel slag before and after FeCl3 modified

    图  8  钢渣经FeCl3改性前后的吸附量

    Figure  8.  The adsorption amount of steel slag before and after FeCl3 modified

    表  1  试验烟气参数

    Table  1.   Flue gas parameters of the experiment

    项目 通入量/mL 总流量/(mL/min)
    SO2 HCl N2(Hg) N2 O2
    1 200 0 300 640 60 1 200
    2 0 0 300 840 60 1 200
    3 0 240 300 600 60 1 200
    下载: 导出CSV
  • [1] 鲁安怀.矿物学环境属性研究新进展[J].岩石矿物学杂志, 2015, 34(6):795-802. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506001.htm

    LU Anhuai.Explore in direction of environmental mineral materials research[J].Journal of Rock mineralogical, 2015, 34(6):795-802. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506001.htm
    [2] 蹼洪九.推进洁净煤技术产业化与我国能源结构优化[J].煤炭学报, 2002, 27(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200201000.htm

    PU Hongjiu.Industrialization of clean coal technology and optimization of China energy structure[J].Journal of China Coal Society, 2002, 27(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200201000.htm
    [3] 岑可法. 洁净煤燃烧发电技术报告[R]. 杭州: 中国煤炭学会, 2001: 652-655.
    [4] WOJTOWICZ M A, PELS J R, MOULIJN J A.N2O emission control in coal combustion[J].Fuel, 1994, 73(9):1416-1422. doi: 10.1016/0016-2361(94)90056-6
    [5] 赵宗彬, 王旭珍, 李保庆.煤燃烧过程中氮氧化合物的生成及排放控制[J].烟台师范学院学报(自然科学版) 2000, 16(3):212-216. http://www.cnki.com.cn/Article/CJFDTOTAL-WOOD200003013.htm

    ZHAO Zongbin, WANG Xuzhen, LI Baoqing.Formation and emission control of nitrogen oxides during coal combustion[J].Yantai Teachers University Journal(Natural Science), 2000, 16(3):212-216. http://www.cnki.com.cn/Article/CJFDTOTAL-WOOD200003013.htm
    [6] 杨振宇, 羌宁, 季学李.美国燃煤电厂锅炉烟气中汞的研究进展[J].能源环境保护, 2003, 17(5):3-7. http://www.cnki.com.cn/Article/CJFDTOTAL-NYBH200305000.htm

    YANG Zhenyu, QIANG Ning, JI Xueli.Current advances of mercury emissions from coal-fired electric utility boilers in U.S.A[J].Energy Environmental Protection, 2003, 17(5):3-7. http://www.cnki.com.cn/Article/CJFDTOTAL-NYBH200305000.htm
    [7] WILLIAM J O, HENRY W, PENNLINE M C, et al.A technique to control mercury from flue gas:the thief process[J].Fuel Processing Technology, 2006, 87:1071-1084. doi: 10.1016/j.fuproc.2006.05.006
    [8] United States Environmental Protection Agency.EPA-452/R-97-004 EPA mercury study report to congress[S].Washington DC:United States Environmental Protection Agency, 1997.
    [9] United States Environmental Protection Agency.EPA to regulate mercury and other air toxics emissions from coal and oil-fired power plants[S].Washington DC:United States Environmental Protection Agency, 2000.
    [10] United States Environmental Protection Agency.EPA research and development control of mercury emission from coal-fired electric utility boilers[S].Washington DC:United States Environmental Protection Agency, 2002.
    [11] 环境保护部. GB 13223-2011火电厂大气污染物排放标准[S]. 北京: 中国环境科学出版社, 2012.
    [12] 环境保护部. GB 18485-2001生活垃圾焚烧污染控制标准[S]. 北京: 环境保护部, 2000.
    [13] GALBREATH K C, ZYGARLICKE C J.Mercury speciation in coal combustion and gasification flue gases[J].Environment Science & Technology, 1996, 30(8):2421-2426. doi: 10.1021/es950935t
    [14] LAUDAL D L, HEIDT M K, GALBREATH K C, et al.State of the art:mercury speciation measurement in coal combustion systems[M]//Air & waste management association 90th annual meeting & exhibition.Pittsburgh PA(United States):Air and Waste Management Association, 1997.
    [15] LINDQVIST O, RODHE H.Atmospheric mercury:a review[J].Tellus, 1985, 37B:136-159. doi: 10.1111/teb.1985.37B.issue-3
    [16] SLEMR F, SCHUSTER G, SEILER W.Distribution and budget of atmospheric mercury[J].Atmospheric Chemical, 1985, 3:407-434. doi: 10.1007/BF00053870
    [17] LINDQVIST O, JOHANSSON K, AASTRUP M, et al.Mercury in swedish forest soils and waters-assessment of critical load[J].Water, Air, & Soil Pollution, 1991, 56(1):267-281. doi: 10.1007/BF00342276
    [18] HALL B.The gas phase oxidation of elemental mercury by ozone[J].Water, Air, & Soil Pollution, 1995, 80:301-315. doi: 10.1007%2F978-94-011-0153-0_34
    [19] SCHROEDER W H, MUNTHE J.Atmospheric mercury:an overview[J].Atmospheric Environment, 1998, 35:809-822.
    [20] YANG H Q, XU Z H, FAN M H, et al.Adsorbents for capturing mercury in coal-fired boiler flue gas[J].Journal of Hazardous Materials, 2007, 146:1-11. doi: 10.1016/j.jhazmat.2007.04.113
    [21] 石应杰, 邓双, 杨丽, 等.利用改性钒钛钢渣和飞灰吸附模拟烟气中的Hg0[J].环境科学研究, 2015, 28(12):1895-1901. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20151211&flag=1

    SHI Yingjie, DENG Shuang, YANG Li, et al.Hg0 removal from simulated flue gas with modified VTS and fly ash as adsorbents[J].Research of Environmental Sciences, 2015, 28(12):1895-1901. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20151211&flag=1
    [22] LI Y, MURPHY P D, WU C Y, et al.Development of silica/vanadia/titania catalysts for removal of element mercury from coal combustion flue gas[J].Environment Science & Technology, 2008, 42:5304-5309.
    [23] SHI Y J, DENG S, WANG H M, et al.Fe and Co modified vanadium-titanium steel slag as sorbents for elemental mercury adsorption[J].Research Advances, 2016, 6:15999-16009.
    [24] DENG S, SHU Y, LI S G, et al.Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention[J].Journal of Hazardous Materials, 2016, 301(15):400-406.
    [25] 高洪亮, 周劲松, 骆仲泱, 等.改性活性炭对模拟燃煤烟气中汞吸附的实验研究[J].中国电机工程学报, 2007, 27(8):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200708005.htm

    GAO Hongliang, ZHOU Jinsong, LU Zhongyang, et al.Experimental study on Hg vapor adsorption of modified activated carbons in simulated flue gas[J].Proceedings of the CSEE, 2007, 27(8):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200708005.htm
    [26] KLEINDIENST T E, SMITH D F, LI W, et al.Secondary organic aerosol formation from the oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium sulfate aerosol[J].Atmospheric Environment, 1999, 33:3669-3681. doi: 10.1016/S1352-2310(99)00121-1
    [27] JAMES D B, BARBARA J T.Secondary organic aerosol formation in cloud and fog droplets, a literature evaluation of plausibility[J].Atmospheric Environment, 2000, 34(12):1623-1632.
    [28] STARK J V, PARK D G, LAGADIC L.Nanoscale metal oxide particles/clusters as chemical reagents.Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gas pressure dependence[J].Chemistry of Materials, 1996, 8(8):1904-1912. doi: 10.1021/cm950583p
    [29] STANLEY J, MILLER G E, DUNHAM E S, et al.Flue gas effects on a carbon-based mercury sorbent[J].Fuel Processing Technology, 2000, 65:343-362.
    [30] 王书肖, 张磊.燃煤电厂大气汞排放控制的必要性与防治技术分析[J].环境保护, 2012(9):31-33. http://www.cnki.com.cn/Article/CJFDTOTAL-HJBU201209010.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1535
  • HTML全文浏览量:  79
  • PDF下载量:  1041
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-24
  • 修回日期:  2016-10-09
  • 刊出日期:  2017-03-25

目录

    /

    返回文章
    返回