留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解

阿旺次仁 李红娜 唐哲仁 彭怀丽 朱昌雄 李锺斗 方建雄

阿旺次仁, 李红娜, 唐哲仁, 彭怀丽, 朱昌雄, 李锺斗, 方建雄. 以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解[J]. 环境科学研究, 2017, 30(11): 1769-1776. doi: 10.13198/j.issn.1001-6929.2017.03.02
引用本文: 阿旺次仁, 李红娜, 唐哲仁, 彭怀丽, 朱昌雄, 李锺斗, 方建雄. 以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解[J]. 环境科学研究, 2017, 30(11): 1769-1776. doi: 10.13198/j.issn.1001-6929.2017.03.02
AWANG Ciren, LI Hongna, TANG Zheren, PENG Huaili, ZHU Changxiong, LEE Jongdoo, BAHNG Gunwoong. Clay Mineral Material as Catalyst in Fenton-Like Reactions for Degradation of Methyl Orange[J]. Research of Environmental Sciences, 2017, 30(11): 1769-1776. doi: 10.13198/j.issn.1001-6929.2017.03.02
Citation: AWANG Ciren, LI Hongna, TANG Zheren, PENG Huaili, ZHU Changxiong, LEE Jongdoo, BAHNG Gunwoong. Clay Mineral Material as Catalyst in Fenton-Like Reactions for Degradation of Methyl Orange[J]. Research of Environmental Sciences, 2017, 30(11): 1769-1776. doi: 10.13198/j.issn.1001-6929.2017.03.02

以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解

doi: 10.13198/j.issn.1001-6929.2017.03.02
基金项目: 

韩国量子能公司农业用颗粒(丸)粉末及使用方法在中国农业生产中实用效果测试计划 开(2015)1

国家水体污染控制与治理科技重大专项 2014ZX07101-012-001

详细信息
    作者简介:

    阿旺次仁(1989-), 男(藏族), 西藏拉萨人, ngatse@163.com

    通讯作者:

    李红娜(1986-), 女, 山西运城人, 助理研究员, 博士, 主要从事农业面源污染控制、农村生活污水深度处理、农村废弃物资源化利用研究, lihongna828@163.com

  • 中图分类号: X592

Clay Mineral Material as Catalyst in Fenton-Like Reactions for Degradation of Methyl Orange

Funds: 

 开(2015)1

 2014ZX07101-012-001

  • 摘要: 为实现以甲基橙为代表的偶氮类染料的高效降解,采用一种黏土矿物材料——Quantum Energy® Radiating Material(下称QE)为催化剂,系统分析了其在非均相类芬顿反应中的催化剂协同静态吸附作用,并考察了不同因素对甲基橙去除效果的影响,同时基于降解过程中Fe2+和总Fe析出量(以ρ计)、·OH等的变化过程,探讨了QE降解甲基橙的作用机制.结果表明,QE对甲基橙具有良好的吸附作用,同时,其作为非均相类芬顿催化剂对甲基橙的降解受到pH、温度、c(H2O2)、催化剂投加量等因素的影响.优化后的降解条件:初始ρ(甲基橙)为50 mg/L、QE投加量为5 g/L、c(H2O2)为100 mmol/L、pH为2、温度为60℃,在该条件下反应40 min后,甲基橙的去除率可达到99%.以叔丁醇作为·OH淬灭剂,随着c(叔丁醇)的增高,反应体系中甲基橙的去除率随之下降,说明·OH在该体系甲基橙降解中起重要作用;对在反应过程中Fe2+和总Fe析出量的监测数据表明,体系中QE对甲基橙的降解为均相芬顿反应、非均相芬顿反应和吸附作用协同作用的结果.研究显示,以QE为催化剂,通过吸附协同催化氧化作用可以有效处理含甲基橙的染料废水.

     

  • 图  1  QE的电镜扫描

    Figure  1.  SEM images of the QE

    图  2  QE的EDS及XRD图谱

    Figure  2.  The EDS and XRD spectra of the QE

    图  3  不同反应体系对甲基橙去除效果的影响

    Figure  3.  Effect of different systems on methyl orange removal

    图  4  不同因素对甲基橙去除率的影响

    Figure  4.  Effect of environmental factors on methyl orange removal

    图  5  pH=2时甲基橙溶液中析出的总Fe与Fe2+的变化趋势

    Figure  5.  Evolution of total dissolved iron and ferrous iron on pH=2

    图  6  不同c(叔丁醇)对甲基橙去除率的影响

    Figure  6.  Effect of t-butanol on methyl orange removal

    表  1  QE主要成分含量[17-19]

    Table  1.   Chemical components of QE

    成分 SiO2 Al2O3 K2O Na2O CaO Fe2O3 MgO 其他 烧失量 总计
    w/% 61.30 12.60 2.53 1.77 4.92 2.67 0.97 2.24 11.00 100
    下载: 导出CSV

    表  2  试验体系

    Table  2.   The test system

    体系 体系描述 反应条件
    H2 甲基橙+H2O2,pH=2 ρ(甲基橙)为50 mg/L,c(H2O2)为100 mmol/L,反应时间为100 min,反应温度为50 ℃
    Q2 甲基橙+QE,pH=2 ρ(甲基橙)为50 mg/L,QE投加量为5 g/L,反应时间为100 min,反应温度为50 ℃
    Q4 甲基橙+QE,pH=4
    Q7 甲基橙+QE,pH=7
    QH2 甲基橙+QE+H2O2,pH=2 ρ(甲基橙)为50 mg/L,QE投加量为5 g/L,c(H2O2)为100 mmol/L,反应时间为100 min,反应温度为50 ℃
    QH4 甲基橙+QE+H2O2,pH=4
    QH7 甲基橙+QE+H2O2,pH=7
    下载: 导出CSV
  • [1] BIBI I, ICENHOWER J, NIAZI N K, et al.Environmental materials and waste:resource recovery and pollution prevention[M].New York:Elsevier Science Publishing Company Inc., 2016:543-567.
    [2] JIE He, YANG Xiaofang, MEN Bin, et al.Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:a review[J].Journal of Environmental Sciences, 2016, 39(1):97-109. http://www.cnki.com.cn/Article/CJFDTotal-HJKB201601013.htm
    [3] BARHOUMI N, OTURAN N, OLVERA-VARGAS H, et al.Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine:kinetics, mechanism and toxicity assessment[J].Water Research, 2016, 94:52-61. doi: 10.1016/j.watres.2016.02.042
    [4] WANG Yan, GAO Yaowen, CHEN Lu, et al.Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange[J].Catalysis Today, 2015, 252:107-112. doi: 10.1016/j.cattod.2015.01.012
    [5] FIDA H, ZHANG G, GUO S, et al.Heterogeneous Fenton degradation of organic dyes in batch and fixed bed using La-Fe montmorillonite as catalyst[J].Journal of Colloid & Interface Science, 2016, 490(15):859-868. https://www.ncbi.nlm.nih.gov/pubmed/28002774
    [6] AUSAVASUKHI A, SOOKNOI T.Catalytic activity enhancement by thermal treatment and re-swelling process of natural containing iron-clay for Fenton oxidation[J].Journal of Colloid & Interface Science, 2014, 436:37-40. https://www.ncbi.nlm.nih.gov/pubmed/25265583
    [7] INCHAURRONDO N, FONT J, RAMOS C P, et al.Natural diatomites:efficient green catalyst for Fenton-like oxidation of Orange Ⅱ[J].Applied Catalysis B:Environmental, 2016, 181:481-494. doi: 10.1016/j.apcatb.2015.08.022
    [8] 余力. 超声助电气石类芬顿及电气石负载TiO2光催化降解水中双酚A的研究[D]. 天津: 南开大学, 2014: 26-27. http://cdmd.cnki.com.cn/Article/CDMD-10055-1015559418.htm
    [9] ESPAÑA V A A, SARKAR B, BISWAS B, et al.Environmental applications of thermally modified and acid activated clay minerals:current status of the art[J].Environmental Technology & Innovation, 2016.doi:10.1016/j.eti, 2016.11.005.
    [10] LI Gang, GUO Shuhai, HU Jinxuan.The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil[J].Chemical Engineering Journal, 2016, 286:191-197. doi: 10.1016/j.cej.2015.10.006
    [11] MIRZAEI N, HADI M, GHOLAMI M, et al.Sorption of acid dye by surfactant modificated natural zeolites[J].Journal of the Taiwan Institute of Chemical Engineers, 2015, 59:186-194. http://linkinghub.elsevier.com/retrieve/pii/S1876107015003363
    [12] SELIM K A, YOUSSEF M A, ABD E F H, et al.Dye removal using some surface modified silicate minerals[J].International Journal of Mining Science and Technology, 2014, 24(2):183-189. doi: 10.1016/j.ijmst.2014.01.007
    [13] STAWIŃSKI W, W EGRZYN A, FREITAS O, et al.Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent[J].Science of the Total Environment, 2017, 576(1):398-408. https://www.sciencedirect.com/science/article/pii/S0048969716323075
    [14] LI Jian, GUAN Peng, ZHANG Yan, et al.A diatomite coated mesh with switchable wettability for on-demand oil/water separation and organic pollutants adsorption[J].Separation & Purification Technology, 2017, 174:275-281. http://linkinghub.elsevier.com/retrieve/pii/S1383586616312138
    [15] ZHANG Yuting, LIU Cao, XU Bingbing, et al.Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2:combination of adsorption and catalysis oxidation[J].Applied Catalysis B:Environmental, 2016, 199:447-457. doi: 10.1016/j.apcatb.2016.06.003
    [16] JAFARI A J, KAKAVANDI B, JAAFARZADEH N, et al.Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator:adsorption and degradation studies[J].Journal of Industrial & Engineering Chemistry, 2017, 45:323-333. http://www.sciencedirect.com/science/article/pii/S1226086X16303781
    [17] 阿旺次仁, 彭怀丽, 朱昌雄, 等.一种新型环境修复材料的制备及其功能分析[J].中国农业气象, 2016(5):513-519. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgny201605003&dbname=CJFD&dbcode=CJFQ

    AWANG Ciren, PENG Huaili, ZHU Changxiong, et al.Preparation and function of a new environmental restoration material[J].Chinese Journal of Agrometeorology, 2016(5):513-519. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgny201605003&dbname=CJFD&dbcode=CJFQ
    [18] BAHNG G W, LEE J D.Development of heat-generating polyester fiber harnessing catalytic ceramic powder combined with heat-generating super microorganisms[J].Textile Research Journal, 2014, 84(11):1220-1230. doi: 10.1177/0040517513503732
    [19] LEE J D, KULKARNI A, KIM T, et al.Electrical properties of "Quantum Energy® Radiating Material" produced from natural clay minerals of south Korea[J].Materials Focus, 2014, 3(6):491-495. doi: 10.1166/mat.2014.1223
    [20] 国家环境保护总局. HJ/T 345-2007水质铁的测定邻菲啰啉分光光度法[S]. 北京: 中国环境出版社, 2007.
    [21] ARAMI M, LIMAEE N Y, MAHMOODI N M, et al.Removal of dyes from colored textile wastewater by orange peel adsorbent:Equilibrium and kinetic studies[J].Journal of Colloid & Interface Science, 2005, 288(2):371-376. http://www.ncbi.nlm.nih.gov/pubmed/15927601
    [22] KRIKA F, BENLAHBIB O E F.Removal of methyl orange from aqueous solution via adsorption on cork as a natural and low-coast adsorbent:equilibrium, kinetic and thermodynamic study of removal process[J].Desalination & Water Treatment, 2014, 53(13):3711-3723. doi: 10.1080/19443994.2014.995136
    [23] SUBBAIAH M V, KIM D S.Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder:kinetics, isotherms, and thermodynamic studies[J].Ecotoxicology & Environmental Safety, 2016, 128:109-117. http://linkinghub.elsevier.com/retrieve/pii/S0147651316300355
    [24] 陈盛, 罗志敏, 刘燕.壳聚糖-沸石杂化膜的制备及其对甲基橙的吸附[J].环境工程学报, 2012, 6(5):1613-1618. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjjz201205040&dbname=CJFD&dbcode=CJFQ

    CHEN Sheng, LUO Zhimin, LIU Yan.Preparation of chitosan-zeolite hybrid membrane and its adsorption to methyl orange[J].Chinese Journal of Environmental Engineering, 2012, 6(5):1613-1618. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjjz201205040&dbname=CJFD&dbcode=CJFQ
    [25] DU Weiping, XU Yiming, WANG Yansong.Photoinduced degradation of orange Ⅱ on different iron (hydr)oxides in aqueous suspension:rate enhancement on addition of hydrogen peroxide, silver nitrate, and sodium fluoride[J].Langmuir, 2008, 24(1):175-181. doi: 10.1021/la7021165
    [26] DAUD N K, HAMEED B H.Decolorization of acid red 1 by Fenton-like process using rice husk ash-based catalyst[J].Journal of Hazardous Materials, 2010, 176(1/2/3):938-944. https://www.ncbi.nlm.nih.gov/pubmed/20042285
    [27] GHISELLI G, JARDIM W F, LITTER M I, et al.Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation[J].Journal of Photochemistry & Photobiology A:Chemistry, 2004, 167(1):59-67. http://linkinghub.elsevier.com/retrieve/pii/S1010603004000668
    [28] 李艳. 天然铁电气石Fenton反应降解甲基橙的效能与机理研究[D]. 哈尔滨: 哈尔滨理工大学, 2012: 19-20. http://cdmd.cnki.com.cn/Article/CDMD-10214-1013173760.htm
    [29] XU Lejin, WANG Jianlong.Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J].Environmental Science & Technology, 2012, 46(18):10145-10153. http://www.ncbi.nlm.nih.gov/pubmed/22924545/
    [30] RUSEVOVA K, KOPINKE F D, GEORGI A.Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(Ⅱ)/Fe(Ⅲ) ratio on catalytic performance[J].Journal of Hazardous Materials, 2012, 241/242(1):433-440. http://www.ncbi.nlm.nih.gov/pubmed/23098995
    [31] YU Li, WANG Cuiping, REN Xinhao, et al.Catalytic oxidative degradation of bisphenol a using an ultrasonic-assisted tourmaline-based system:influence factors and mechanism study[J].Chemical Engineering Journal, 2014, 252(18):346-354. http://www.sciencedirect.com/science/article/pii/S1385894714005786
    [32] REISZ E, SCHMIDT W, SCHUCHMANN H P, et al.Photolysis of ozone in aqueous solutions in the presence of tertiary butanol[J].Environmental Science & Technology, 2003, 37:1941-1948 doi: 10.1021/es0113100
    [33] CHAKMA S, DAS L, MOHOLKAR V S.Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/Fenton-like/photo-ferrioxalate systems:a mechanistic investigation[J].Separation & Purification Technology, 2015, 156:596-607. http://linkinghub.elsevier.com/retrieve/pii/S1383586615303063
    [34] COSTA R C C, MOURA F C C, ARDISSON J D, et al.Highly active heterogeneous Fenton-like systems based on FeO/Fe3O4, composites prepared by controlled reduction of iron oxides[J].Applied Catalysis B:Environmental, 2008, 83(1):131-139. http://www.sciencedirect.com/science/article/pii/S0926337308000702
    [35] WEI Luo, ZHU Lihua, NAN Wang, et al.Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst[J].Environmental Science & Technology, 2010, 44(5):1786-1791. https://www.ncbi.nlm.nih.gov/pubmed/20131791
    [36] 汪快兵, 方迪, 徐峙晖, 等.生物合成施氏矿物作为类芬顿反应催化剂降解甲基橙的研究[J].环境科学, 2015, 36(3):995-999. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjkz201503037&dbname=CJFD&dbcode=CJFQ

    WANG Kuaibing, FANG Di, XU Zhenghui, et al.Biosynthetic schwertmannite as catalyst in Fenton-like reactions for degradation of methyl orange[J].Environmental Science, 2015, 36(3):995-999. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hjkz201503037&dbname=CJFD&dbcode=CJFQ
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1724
  • HTML全文浏览量:  53
  • PDF下载量:  992
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-24
  • 修回日期:  2017-07-08
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回