留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于渗透通风条件建筑结构对室内PM2.5浓度水平影响评价模型探讨

陈超 陈紫光 吴玉琴 魏绅 王平

陈超, 陈紫光, 吴玉琴, 魏绅, 王平. 关于渗透通风条件建筑结构对室内PM2.5浓度水平影响评价模型探讨[J]. 环境科学研究, 2017, 30(11): 1761-1768. doi: 10.13198/j.issn.1001-6929.2017.03.17
引用本文: 陈超, 陈紫光, 吴玉琴, 魏绅, 王平. 关于渗透通风条件建筑结构对室内PM2.5浓度水平影响评价模型探讨[J]. 环境科学研究, 2017, 30(11): 1761-1768. doi: 10.13198/j.issn.1001-6929.2017.03.17
CHEN Chao, CHEN Ziguang, WU Yuqin, WEI Shen, WANG Ping. Modeling the Influence of Building Structure on Indoor PM2.5 Mass Concentration due to Infiltration[J]. Research of Environmental Sciences, 2017, 30(11): 1761-1768. doi: 10.13198/j.issn.1001-6929.2017.03.17
Citation: CHEN Chao, CHEN Ziguang, WU Yuqin, WEI Shen, WANG Ping. Modeling the Influence of Building Structure on Indoor PM2.5 Mass Concentration due to Infiltration[J]. Research of Environmental Sciences, 2017, 30(11): 1761-1768. doi: 10.13198/j.issn.1001-6929.2017.03.17

关于渗透通风条件建筑结构对室内PM2.5浓度水平影响评价模型探讨

doi: 10.13198/j.issn.1001-6929.2017.03.17
基金项目: 

国家"十三五"科技支撑计划项目 2I004020201604

国家自然科学基金项目 51378024

北京市自然科学基金项目 8162006

详细信息
    作者简介:

    陈超(1958-), 女, 湖南长沙人, 教授, 博士, 博导, 主要从事建筑节能与室内空气品质及通风研究, chenchao@bjut.edu.cn

  • 中图分类号: X51

Modeling the Influence of Building Structure on Indoor PM2.5 Mass Concentration due to Infiltration

Funds: 

 2I004020201604

 51378024

 8162006

  • 摘要: 我国京津冀地区近年频遭大气PM2.5污染侵扰,相关研究表明,既使关闭建筑外窗,大气中PM2.5仍可以通过渗透通风方式进入室内污染环境.为定量评价建筑渗透通风及无室内污染源条件下建筑结构(如外窗缝隙结构、房间建筑结构等)对室内ρ(PM2.5)的影响规律,基于北京市东城区、朝阳区6个不同建筑结构的房间室内外ρ(PM2.5)实时监测数据,重点比较分析了建筑结构对室内外ρ(PM2.5)关联特性的影响规律.此外,根据颗粒物穿透特性及沉降特性机理,提出了反映建筑外窗缝隙结构(如缝高、缝深)的无量纲特征参数AP与反映房间建筑结构(如层高、开间、进深)的无量纲特征参数Ak.在前期提出的室内ρ(PM2.5)预测模型基础上,进一步构建了二者(APAk)对室内ρ(PM2.5)影响的评价模型,并通过实测数据验证了模型的正确性.结果表明:当室外PM2.5污染程度与气象条件一定时,建筑结构对I/O[室内外ρ(PM2.5)之比]影响较大,其范围在0.4~0.7之间;随着建筑外窗气密性等级的提高,对应室内ρ(PM2.5)呈显著的下降趋势.建筑外窗缝隙结构对室内ρ(PM2.5)影响程度远大于房间建筑结构,敏感性分析结果表明,当建筑外窗缝高每降低50%或缝深每提高50%,对应室内ρ(PM2.5)约可下降33.6%与31.9%.研究显示,气密性等级较高的建筑外窗缝隙缝高往往较小、缝深较长,渗透通风条件下对控制室内ρ(PM2.5)水平作用更显著。

     

  • 图  1  典型的建筑外窗结构示意

    Figure  1.  A typical schematic diagram of external window structure

    图  2  房间建筑结构示意

    Figure  2.  Schematic diagram of room structure

    图  3  建筑外窗缝隙结构与房间建筑结构对I/O的影响

    Figure  3.  Influence of the external window crack structure and room dimension on I/O

    表  1  实测对象详细情况

    Table  1.   The detail information of the six sampling sites

    建筑编号 房间结构尺寸
    (长×宽×高, 单位为m)
    外窗类型 建筑外窗气密性能等级 建筑外窗尺寸
    (长×宽, 单位为m)1)
    外窗缝深/mm 测点距地面高度/m
    1 4.5×4.4×2.8 平开窗 4 1.15×0.70 50 25
    2 6.0×4.0×3.0 上悬窗 8 1.20×0.90 70 25
    3 5.9×4.4×3.7 推拉窗 3 1.07×1.16 62 10
    4 11.8×8.6×2.8 平开窗 5 1.80×1.50 70 20
    5 6.0×3.0×3.3 上悬窗 6 1.70×0.90 70 20
    6 6.7×4.1×2.9 平开窗 5 1.30×0.60 60 15
      注:1)指建筑外窗可开启部分.
    下载: 导出CSV

    表  2  建筑外窗气密性能分级表

    Table  2.   External window air-tightness level in GB/T 7106-2008

    分级 1 2 3 4 5 6 7 8
    ql/[m3/(m·h)] 3.5 < ql≤4.0 3.0 < ql≤3.5 2.5 < ql≤3.0 2.0 < ql≤2.5 1.5 < ql≤2.0 1.0 < ql≤1.5 0.5 < ql≤1.0 ql≤0.5
    下载: 导出CSV

    表  3  1~6号建筑外窗缝隙高度

    Table  3.   Calculated external window crack height of the six sampling sites

    建筑编号 1 2 3 4 5 6
    外窗缝高/mm 0.912 0.599 0.910 0.819 1.054 0.939
    下载: 导出CSV

    表  4  采样仪器相关信息

    Table  4.   Detail information of the sampling instruments

    监测内容 仪器型号 仪器量程 仪器灵敏度 仪器误差
    室内外ρ(PM2.5)/(μg/m3) LD-5C(R) 1) 1~103 1 ±5%
    干球温度/℃ ATS-3 -50~80 0.1 ±0.1
    室外气象参数2) 相对湿度/% ATS-3 0~100 0.1 ±2
    风速/(m/s) WS-8SX 0~70 0.1 ±0.3
      注:1)该仪器采样泵单次进气时间为1 min,流量为2.83 L/min;2)数据采集主机为FSR-4便携式气象站.
    下载: 导出CSV

    表  5  室内外ρ(PM2.5)关联特性实测结果

    Table  5.   Filed measurement results of indoor-outdoor PM2.5 mass concentrations

    实测时间 建筑物编号 ρ(PM2.5)/(μg/m3) 大气PM2.5分级水平
    室外 室内
    最小值 最大值 平均值 最小值 最大值 平均值
    2015年11月16—17日 1 36 69 50.5 13 38 25.8 优良
    ρ(PM2.5)≤75 μg/m3
    2 31 73 52.3 11 35 20.5
    2016年1月29日 3 16 55 27.7
    4 29 75 45.9 16 40 22.2
    5 14 33 21.8
    2015年11月19日 1 102 146 125.5 42 92 71.8 轻微-中度污染
    75<ρ(PM2.5)≤150 μg/m3
    2 106 149 128.1 33 73 58.2
    2016年1月16日 3 56 85 69.9
    4 85 143 126.6 50 70 65.8
    5 59 111 79.7
    2015年11月13—15日 1 184 579 364.1 109 365 210.7 重度-严重污染
    ρ(PM2.5)>150 μg/m3
    2 187 568 369.6 84 212 128.8
    2016年1月1—2日 3 135 363 206.2
    4 166 586 336.7 101 277 165.9
    5 92 244 141.1
      注:由于6号建筑与其他建筑的实测时间不同时,不参与对比.
    下载: 导出CSV

    表  6  1~5号建筑相应的ApAkA

    Table  6.   The Ap, Ak and A of Sampling sites 1-5

    建筑编号 AP Ak A
    1 0.018 0.443 0.576
    2 0.009 0.547 0.422
    3 0.017 0.371 0.603
    4 0.013 0.315 0.520
    5 0.012 0.664 0.474
    下载: 导出CSV
  • [1] 王浩, 高健, 李慧, 等.2007-2014年北京地区PM2.5质量浓度变化特征[J].环境科学研究, 2016, 29(6):783-790. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160601&flag=1

    WANG Hao, GAO Jian, LI Hui, et al.Variation of PM2.5 mass concentration in Beijing area during 2007-2014[J].Research of Environmental Sciences, 2016, 29(6):783-790. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20160601&flag=1
    [2] 环境保护部. 中国环境状况公报: 2016[R]. 北京: 环境保护部, 2017.
    [3] XIE Yang, DAI Hancheng, DONG Huijuan, et al.Economic impacts from PM2.5 pollution-related health effects in China:a provincial-level analysis[J].Environmental Science & Technology, 2016, 50(9):4836-4843. http://www.ncbi.nlm.nih.gov/pubmed/27063584
    [4] CHEN Zhihua, WU Yinfang, WANG Pingli, et al.Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium[J].Autophagy, 2016, 12(2):297-311. doi: 10.1080/15548627.2015.1124224
    [5] FROMME H, TWARDELLA D, DIETRICH S, et al.Particulate matter in the indoor air of classrooms-exploratory results from Munich and surrounding area[J].Atmospheric Environment, 2007, 41(4):854-866. doi: 10.1016/j.atmosenv.2006.08.053
    [6] 王佳, 郑君瑜, 柯钊跃, 等.典型工业源下风向居民住宅区PM2.5暴露评价[J].环境科学研究, 2012, 25(7):745-750. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20120703&flag=1

    WANG Jia, ZHENG Junyu, KE Zhaoyue, et al.Assessment of PM2.5 exposure of residents in a community downwind of a typical industrial source[J].Research of Environmental Sciences, 2012, 25(7):745-750. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20120703&flag=1
    [7] ZHAO Xiujuan, ZHANG Xiaoling, XU Xiaofeng, et al.Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing[J].Atmospheric Environment, 2009, 43(18):2893-2900. doi: 10.1016/j.atmosenv.2009.03.009
    [8] MASSEY D, KULSHRESTHA A, MASIH J, et al.Seasonal trends of PM10, PM5.0, PM2.5 and PM1.0 in indoor and outdoor environments of residential homes located in North-Central India[J].Building and Environment, 2012, 47:223-231. doi: 10.1016/j.buildenv.2011.07.018
    [9] KRUMAL K, MIKUSKA P, VOJTESEK M, et al.Seasonal variations of monosaccharide anhydrides in PM1 and PM2.5 aerosol in urban areas[J].Atmospheric Environment, 2010, 44(39):5148-5155. doi: 10.1016/j.atmosenv.2010.08.057
    [10] NAZAROFF W W.Indoor particle dynamics[J].Indoor Air, 2004, 14(7):175-183. http://onlinelibrary.wiley.com/resolve/doi?DOI=10.1111/j.1600-0668.2004.00286.x
    [11] HAGHIGHAT F, BROHUS H, RAO Jiwu.Modelling air infiltration due to wind fluctuations:a review[J].Building and Environment, 2000, 35(5):377-385. doi: 10.1016/S0360-1323(99)00028-1
    [12] YOUNES C, SHDID C A, BITSUAMLAK G.Air infiltration through building envelopes:a review[J].Journal of Building Physics, 2012, 35(3):267-302. doi: 10.1177/1744259111423085
    [13] LIU Deling, NAZAROFF W W.Particle penetration through building cracks[J].Aerosol Science and Technology, 2003, 37(7):565-573. doi: 10.1080/02786820300927
    [14] 田利伟, 张国强, 于靖华, 等.颗粒物在建筑围护结构缝隙中穿透机理的数学模型[J].湖南大学学报(自然科学版), 2008, 35(10):11-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hndx200810002&dbname=CJFD&dbcode=CJFQ

    TIAN Liwei, ZHANG Guoqiang, YU Jinghua, et al.Mathematical simulation of particle penetration through smooth and rough building envelop leakage[J].Journal of Hunan University(Natural Sciences), 2008, 35(10):11-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hndx200810002&dbname=CJFD&dbcode=CJFQ
    [15] KLAI A C.Particle deposition indoors:a review[J].Indoor Air, 2002, 12(4):211-214. doi: 10.1046/j.0905-6947.2002.1r159a.x
    [16] THATCHER T L, KLAI A C, JACKSON R M, et al.Effects of room furnishings and air speed on particle deposition rates indoors[J].Atmospheric Environment, 2002, 36(11):1811-1819. doi: 10.1016/S1352-2310(02)00157-7
    [17] LU Hao, LU Lin.A numerical study of particle deposition in ribbed duct flow with different rib shapes[J].Building and Environment, 2015, 94(1):43-53. http://linkinghub.elsevier.com/retrieve/pii/S0360132315300731
    [18] JI Wenjing, ZHAO Bin.Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration:a model-based estimation[J].Building and Environment, 2015, 90:196-205. doi: 10.1016/j.buildenv.2015.04.006
    [19] ZHAO Li, CHEN Chao, WANG Ping, et al.Influence of atmospheric fine particulate matter (PM2.5) pollution on indoor environment during winter in Beijing[J].Building and Environment, 2015, 87:283-291. doi: 10.1016/j.buildenv.2015.02.008
    [20] ASHRAE.2001 ASHRAE Handbook[M].Georgia, USA:American National Standards Institute, 2001.
    [21] BAKER P H, SHARPLES S, WARD I C.Air flow through cracks[J].Building and Environment, 1987, 22(4):293-304. doi: 10.1016/0360-1323(87)90022-9
    [22] 刘朝贤.对现行国家建筑外门窗气密性指标不能采用单位面积渗透量表述的论证[J].制冷与空调, 2014, 28(4):504-507. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zlkt201404026&dbname=CJFD&dbcode=CJFQ

    LIU Zhaoxian.The argument about current national airtight performance index of building exterior doors and windows cannot be expressed by per unit area infiltration[J].Refrigeration and Air Conditioning, 2014, 28(4):504-507. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zlkt201404026&dbname=CJFD&dbcode=CJFQ
    [23] HAN Yang, QI Meng, CHEN Yilin, et al.Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach[J].Environmental Pollution, 2015, 205:307-314. doi: 10.1016/j.envpol.2015.04.026
    [24] LI Yuguo, CHEN Zhengdong.A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations[J].Atmospheric Environment, 2003, 37(30):4277-4285. doi: 10.1016/S1352-2310(03)00527-2
    [25] POPESCU L, LIMAM K.Particle penetration research through buildings' cracks[J].HVAC & R Research, 2012, 18(3):312-322. doi: 10.1080/10789669.2011.610686
    [26] HE Congrong, MORAWSKA L, GILBERT D.Particle deposition rates in residential houses[J].Atmospheric Environment, 2005, 39(21):3891-3899. doi: 10.1016/j.atmosenv.2005.03.016
    [27] YOU Rouyu, ZHAO Bin, CHEN Chun.Developing an empirical equation for modeling particle deposition velocity onto inclined surfaces in indoor environments[J].Aerosol Science and Technology, 2012, 46(10):1090-1099. doi: 10.1080/02786826.2012.695096
    [28] THOMAS S, KELD A J, PER A C, et al.Prediction of indoor concentration of 0.5-4μm particles of outdoor origin in an uninhabited apartment[J].Atmospheric Environment, 2004, 38(37):6349-6359. doi: 10.1016/j.atmosenv.2004.08.002
    [29] ABADIE M, LIMAM K, ALLARD F.Indoor particle pollution:effect of wall textures on particle deposition[J].Building and Environment, 2001, 36(7):821-827. doi: 10.1016/S0360-1323(01)00007-5
    [30] HAMDANI S E, LIMAM K, ABADIE M, et al.Deposition of fine particles on building internal surfaces[J].Atmospheric Environment, 2008, 42(39):8893-8901. doi: 10.1016/j.atmosenv.2008.09.005
    [31] 徐仲, 张凯院, 陆全, 等.矩阵论简明教程[M].北京:科学出版社, 2001:85-87.
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  1787
  • HTML全文浏览量:  38
  • PDF下载量:  1665
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-15
  • 修回日期:  2017-07-14
  • 刊出日期:  2017-11-25

目录

    /

    返回文章
    返回